

Lecture Notes in Artificial Intelligence 3508
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Paolo Bresciani Paolo Giorgini
Brian Henderson-Sellers Graham Low
Michael Winikoff (Eds.)

Agent-Oriented
Information Systems II

6th International Bi-Conference Workshop, AOIS 2004
Riga, Latvia, June 8, 2004 and New York, NY, USA, July 20, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Paolo Bresciani
Institute for Scientific and Technological Research (IRST), Trento, Italy
E-mail: bresciani@itc.it

Paolo Giorgini
University of Trento, Department of Information and Communication Technology
Trento, Italy
E-mail: paolo.giorgini@dit.unitn.it

Brian Henderson-Sellers
University of Technology, Sydney
Faculty of Information Technology, Sydney, Australia
E-mail: brian@it.uts.edu.au

Graham Low
University of New South Wales
School of Information Systems, Technology and Management
Sydney, Australia
E-mail: g.low@unsw.edu.au

Michael Winikoff
RMIT University, School of Computer Science and Information Technology
Melbourne, Australia
E-mail: winikoff@cs.rmit.edu.au

Library of Congress Control Number: 2004106088

CR Subject Classification (1998): I.2.11, H.4, H.3, H.5.2-3, C.2.4, I.2

ISSN 0302-9743
ISBN-10 3-540-25911-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25911-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11426714 06/3142 5 4 3 2 1 0

Preface

Information systems have become the backbone of all kinds of organizations to-
day. In almost every sector – manufacturing, education, health care, government
and businesses large and small – information systems are relied upon for ev-
eryday work, communication, information gathering and decision-making. Yet,
the inflexibilities in current technologies and methods have also resulted in poor
performance, incompatibilities and obstacles to change. As many organizations
are reinventing themselves to meet the challenges of global competition and
e-commerce, there is increasing pressure to develop and deploy new technologies
that are flexible, robust and responsive to rapid and unexpected change.

Agent concepts hold great promise for responding to the new realities of in-
formation systems. They offer higher-level abstractions and mechanisms which
address issues such as knowledge representation and reasoning, communication,
coordination, cooperation among heterogeneous and autonomous parties, per-
ception, commitments, goals, beliefs, intentions, etc., all of which need concep-
tual modelling. On the one hand, the concrete implementation of these concepts
can lead to advanced functionalities, e.g., in inference-based query answering,
transaction control, adaptive work flows, brokering and integration of disparate
information sources, and automated communication processes. On the other
hand, their rich representational capabilities allow for more faithful and flex-
ible treatments of complex organizational processes, leading to more effective
requirements analysis and architectural/detailed design.

The Agent Oriented Information Systems (AOIS) workshop series focusses
on how agent concepts and techniques will contribute to meeting information
systems needs today and tomorrow. To foster greater communication and in-
teraction between the information systems and agents communities, the AOIS
workshop is organized as a bi-conference event. It is intended to be a single “log-
ical” event with two “physical” venues. This arrangement encourages greater
participation from, and more exchange between, both communities.

AOIS 2004 was the sixth edition of the workshop. The first part was hosted on
the 8th of June at CAiSE 2004 – the 16th International Conference on Advanced
Information Systems Engineering – in Riga (Latvia). The second part was held
on the 20th of July at AAMAS 2004 – the 3rd International Joint Conference on
Autonomous Agents and Multi-agent Systems (AAMAS 2004) – in New York
(USA). The workshop received in total 36 submissions, 23 of which were ac-
cepted for presentation. These papers were reviewed by at least 3 members of an
international Program Committee composed of 31 researchers. The submissions
followed a call for papers on all aspects of agent-oriented information systems
and showed the range of results achieved in several areas, such as methodologies,
applications, modelling, analysis and simulation.

VI Preface

This volume contains the revised versions of 14 selected papers presented at
the workshop and an invited paper by Terry Halpin who gave a keynote speech
at the CAiSE event. The papers are grouped into four categories: information
systems, analysis and modelling, methodologies and applications.

We believe that this carefully prepared volume will be of particular value to
all readers in these key topics, describing the most recent developments in the
field of agent-oriented information systems.

We thank the authors, the participants and the reviewers for making
AOIS 2004 a high-quality scientific event.

March 2005 Paolo Bresciani
Paolo Giorgini

Brian Henderson-Sellers
Graham Low

Michael Winikoff

,

Organization

Organizing Committee

Paolo Bresciani (AOIS@CAiSE Co-chair)
Institute for Scientific and Technological Research (IRST)
Trento, Italy
Email: bresciani@itc.it

Paolo Giorgini (AOIS@AAMAS Co-chair)
Department of Information and Communication Technology
University of Trento, Italy
Email: paolo.giorgini@dit.unitn.it

Brian Henderson-Sellers (AOIS@CAiSE Co-chair)
Faculty of Information Technology
University of Technology, Sydney, Australia
Email: brian@it.uts.edu.au

Graham Low (AOIS@CAiSE Co-chair)
School of Information Systems, Technology and Management
University of New South Wales, Sydney, Australia
Email: g.low@unsw.edu.au

Michael Winikoff (AOIS@AAMAS Co-chair)
School of Computer Science and Information Technology
RMIT University, Melbourne, Australia
Email: winikoff@cs.rmit.edu.au

Steering Committee

Yves Lespérance
Department of Computer Science
York University, Canada
Email:lesperan@cs.yorku.ca

Gerd Wagner
Department of Information and Technology,
Eindhoven University of Technology, The Netherlands
Email: G.Wagner@tm.tue.nl

Eric Yu
Faculty of Information Studies,
University of Toronto, Canada
Email: eric.yu@utoronto.ca

VIII Organization

Program Committee

B. Blake (USA)
H.-D. Burkhard (Germany)
L. Cernuzzi (Paraguay)
L. Cysneiros (Canada)
F. Dignum (The Netherlands)
P. Donzelli (USA)
B. Espinasse (France)
B.H. Far (Canada)
I.A. Ferguson (USA)
T. Finin (USA)
A. Gal (Israel)
U. Garimella (India)
A.K. Ghose (Australia)
L. Kendall (Australia)
M. Kolp (Belgium)
G. Lakemeyer (Germany)

Y. Lespérance (Canada)
F. Lin (HK)
H. Mouratidis (UK)
J.P. Mueller (Germany)
D.E. O’Leary (USA)
J. Odell (USA)
O.F. Rana (UK)
A. Sturm (Israel)
N. Szirbik (The Netherlands)
G. Wagner (The Netherlands)
C. Woo (Canada)
M. Wooldridge (UK)
B. Yu (USA)
Eric Yu (Canada)
F. Zambonelli (Italy)

Table of Contents

Information Systems

An Agent-Based Collaborative Emergent Process Management System
Aizhong Lin, Igor Hawryszkiewycz, Brian Henderson-Sellers 1

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems
Nobukazu Yoshioka, Akihiko Ohsuga, Shinichi Honiden 19

The Analysis of Coordination in an Information System Application -
Emergency Medical Services

Wei Chen, Keith S. Decker . 36

Market-Based Recommender Systems: Learning Users’ Interests by
Quality Classification

Yan Zheng Wei, Luc Moreau, Nicholas R. Jennings 52

Analysis and Modeling

SNet Reloaded: Roles, Monitoring and Agent Evolution
Günter Gans, Dominik Schmitz, Thomas Arzdorf, Matthias Jarke,
Gerhard Lakemeyer . 68

Analyzing Multiparty Agreements with Commitments
Feng Wan, Munindar P. Singh . 85

Fact-Orientation Meets Agent-Orientation
Terry Halpin . 97

Towards Ontological Foundations for Agent Modelling Concepts Using
the Unified Fundational Ontology (UFO)

Giancarlo Guizzardi, Gerd Wagner . 110

Methodologies

AgentZ: Extending Object-Z for Multi-agent Systems Specification
Anarosa A.F. Brandão, Paulo Alencar, Carlos J.P.de Lucena 125

Incorporating Elements from the Prometheus Agent-Oriented
Methodology in the OPEN Process Framework

Brian Henderson-Sellers, Quynh Nhu N. Tran, J. Debenham 140

X Table of Contents

A Preliminary Comparative Feature Analysis of Multi-agent Systems
Development Methodologies

Quynh-Nhu Numi Tran, Graham Low, Mary-Anne Williams 157

Applications

CMRadar: A Personal Assistant Agent for Calendar Management
Pragnesh Jay Modi, Manuela Veloso, Stephen F. Smith, Jean Oh 169

Agents as Catalysts for Mobile Computing
G.M.P. O’Hare, M.J. O’Grady, R.W. Collier, S. Keegan 182

A Systematic Approach for Including Machine Learning in Multi-agent
Systems

José A.R.P. Sardinha, Alessandro Garcia, Carlos J.P. Lucena, Ruy
L. Milidiú . 198

Agents to Foster Conscious Design and Reuse in Architecture
Daniel Pinho, Adriana S. Vivacqua, Sérgio Palma,
Jano M. de Souza . 212

Author Index . 227

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 1 – 18, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Agent-Based Collaborative Emergent Process
Management System

Aizhong Lin, Igor Hawryszkiewycz, and Brian Henderson-Sellers

Faculty of Information Technology,
University of Technology, Sydney,

POBox 123, Broadway,
NSW 2007, Australia

{alin, igorh, brian}@it.uts.edu.au

Abstract. An emergent process is a process whose goal and activities to achieve
the goal are unable to be specified in advance but emerge over time as knowledge
gained from the activities performed earlier shapes the subsequent goal and
activities. Collaborative emergent process management needs functions to support
the representation and storage of emergent process instances, process automation
and knowledge sharing. Traditional process management systems lack the full
functionality of collaborative emergent process management. Our research
provides an agent-based collaborative emergent process management system that
provides the full functionality needed for managing emergent process instances
collaboratively. This paper presents the system including the management model,
system architecture, major components, key modules and an application.

1 Introduction

An emergent process is a process whose goal and activities to achieve that goal are
unable to be specified in advance but emerge over time as knowledge gained from the
activities performed earlier shapes the subsequent goal and activities. A research
project is an example of an emergent process. Emergent processes have the following
distinctive features. Firstly, an emergent process may not have a predefined goal, or
its goal may mutate over time. Secondly, an emergent process does not have a
predefined solution. The solution of each emergent process instance differs from the
solutions of other emergent process instances. Thirdly, an emergent process is a
knowledge-driven process. The process knowledge gives direction to the current
process. Next, an emergent process will not terminate until a satisfactory conclusion
is reached - achieving a business goal is not the termination condition of an emergent
process. Finally, an emergent process is the intertwining of two process stages -
process definition (also called process modelling) and process enactment (also called
process execution). In the process definition stage, process participants determine or
change the process goal and activities. In the process enactment stage, process
participants perform the activities and harvest the knowledge.

Managing emergent processes requires a management system equipped with the
functions to support the representation and storage of emergent process instances,
support process enactment, support the intertwining of process definition and

2 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

enactment, and support process knowledge management and sharing. Traditional
process management, which focuses on managing routine processes, is inadequate for
managing emergent processes because (1) early systems [1,2] do not provide a
mechanism to bridge process definition and process enactment, and (2) recent systems
(such as workflow management systems) lack the capability to support the evolution
of process goals and activities.

Our research contributes an agent-based collaborative emergent process
management system to support emergent processes by interacting with human process
participants to define and change goals and activities; perform process activities; and
manage and share process knowledge. The system consists of two components: a
process workspace manager and a personal process agent framework. The process
workspace manager resides on a server to manage process workspaces that are used to
represent and store emergent process instances. The personal process agent
framework is used to construct personal process agents that run on a client allowing
process participants to define or change process instances (including goals and
solutions), achieve goals or execute activities, support interactions between process
participants, and manage and share process knowledge. An experimental emergent
process management system has been implemented as demonstrated here.

2 The Management Model

An emergent process instance can be represented by a meta-model (Figure 1). An
emergent process meta-model defines a collection of elements (such as process goal,
process activity, process constraint) and their relationships (such as activity
“achieves” a goal) used in emergent processes.

process m odel

goal

activity

role patron

participants

has

defines

has

achieves

enacts

fills

process instance

has

business process

instanced

activity instance

has

responsib le for

perform s

instanced

has

has

A n organization

has

has

constrain t

lim its

has

process m odeling

process enactm ent

Fig. 1. The meta-model to represent emergent process instances

 An Agent-Based Collaborative Emergent Process Management System 3

An emergent process instance (left arrow in Figure 2) can be defined (create,
change, or mutate the goals, activities, constraints) by process participants who can
also achieve goals or perform activities defined in the instance. Process participants
can perceive the changes that take place in the process instance and harvest process
knowledge from performing the process instance (right hand arrow in Figure 2). The
newly gained process knowledge combined with existing knowledge is used to define
process goals and activities (back to the left arrow).

Em ergent process instance

Process participants

• define process goals, activities,
, … , termination conditions

• perform activities

• perceive process events
• harvest process knowledge

participant 1

participant 2

participant 3

participant n

K

K

K

K

K: knowledge

interact

define/perform/perceive/harvest

Emergent process instances

Fig. 2. The management model Fig. 3. The detailed management model

During the enactment of an emergent process instance, distributed process
participants interact with each other. Figure 3 expands the system architecture shown
in Figure 2 for managing emergent business processes. From these two figures,
process functions can be summarized as:

• define: create, modify or mutate process elements
• perform: execute activities to achieve process goals
• perceive: perceive changes in process instances
• harvest: harvest process knowledge from emergent process instances
• manage: manage process knowledge and the path of changes for process

instances
• interact: support interactions between process participants

3 The System Architecture

The emergent process management model determines the emergent process
management system architecture. To convert the management model to the system
architecture, two decisions have to be made. Firstly, a process workspace component
is developed to represent and store instances of emergent processes. The process
workspace component consists of

• a process workspace (PW) model is a set of process elements, a set of
relationships between process workspaces and a set of links each of which
connects a process workspace to another process workspace.

4 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

• a directed process workspace graph (DPWG) contains a set of related process
workspace to represent a process instance.

• a process workspace library (PWL) contains a set of directed process
workspace graphs in an organization.

• a process workspace manager (PWM) is a software component that manages a
PWL. The management functions provided by PWM include the creation,
retrieval, modification, deletion and access control of a single PW in the PWL.

Secondly, software agents are developed to assist human process participants to
define and perform process instances, to perceive process events, to harvest process
knowledge and interact with each other. Each agent, called the personal process agent
(PPA), works on behalf of one and only one human process participant. It is situated
in a specific process environment (such as an organization) and is capable of
autonomous and flexible actions to respond to changes in the process environment.

The management system has two components: a process workspace manager
(PWM) and a set of personal process agents (PPAs) (Figure 4). The PWM maintains
DPWGs, each of which contains a set of related PWs, used to represent and store
emergent process instances (top of Figure 4). PPAs (middle of Figure 4) are employed
to assist the work of human participants. Each PPA is generated from a generic
personal process framework. An agent has process functions to define process
elements and relationships for process instances in PWs, to perceive the events that
have taken place in PWs, to achieve goals or execute activities defined in PWs, to
harvest process knowledge from activities performed and to interact with other PPAs.

Process W orkspace M anager

PPA 1

PPA 2

PPA 3

PPA n

K

K

K

K

K: knowledge

… …

PPA: Personal process agent

perceive/checkout/harvest/change/perform/checkin

interact

Robert

wdpan

Alan

dbxue

Fig. 4. The architecture of an emergent process management system

 An Agent-Based Collaborative Emergent Process Management System 5

The system architecture is a hybrid, combining three traditional architectures:
client/server, peer-to-peer and producer/consumer. Firstly, the client/server
architecture is necessary in this system architecture because:

• An emergent process instance should be accessed by all participants who have
permission to work on it.

• The process instance should appear the same to all participants at all times.

Secondly, the producer/consumer architecture is necessary to:

• Produce: any human participant may define or change (produce) process goals
or activities and advertise process knowledge in the process instance.

• Consume: any human participant may perform process activities or achieve
process goals.

However, this producer/consumer architecture extends traditional producer/
consumer architecture in two respects:

• In a traditional producer/consumer architecture, producers and consumers play
different roles. A producer is not a consumer and a consumer does not have to be
a producer. In our producer/consumer architecture, however, a PPA can be both
producer and consumer, i.e., a PPA may produce goals or activities for others to
consume, and consume goals or activities produced by others, even by itself.

• In a traditional producer/consumer architecture, producers do not have to wait
for the results of consumers. In this architecture, however, producers may expect
the results from consumers to produce new goals or activities.

Finally, the peer-to-peer architecture is needed because:

• Participants in a group are naturally distributed.
• The relationships between human participants are peer to peer because no

participant can control other participants. No participant can directly access
knowledge owned by other participants.

4 The Implementation of the Emergent Process Management
System (EPMS)

Based on the system architecture, the management system is implemented with two
components: the process workspace manager (PWM) and the PPA framework.

4.1 Support Techniques

The emergent process management system is implemented as shown in Figures 5 and
6. Figure 5 illustrates the technical support of the PWL (Process Workspace Library)
and the PWM. The PWL is built on two technologies: Folders/Files management
technology and PWXML (Process Workspace XML – designed by the first author as
part of his PhD). Folders/Files management is used to manage folders and files in
which each folder is a DPWG (Directed Process Workspace Graph) and each file is a
PW. Based on standard XML [3], PWXML is used to represent the PW, each PW

6 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

being saved as a .xml file in a folder. A PWXML Document Type Definition defines
the syntax and semantics of the PWXML. SAX (Simple API for XML) and DOM
(Document Object Model) are used to assist the conversion from a XML format
stream to an object and vice versa. The PWM employs SAX and DOM to parse or
generate an XML stream from or to the PWL. The PWM is a Java Servlet program
that extends the Sun Servlet module, running on an Apache HTTP server that has a
fixed IP address or a universal domain name.

 Client side

PPA

PPA PPA

…
PPA

PPA

Server side

Apache
HTTP
server

Sun
Servlet

PWM (Process
Workspace Manager)

SAX DOM

PWL
PWXML

Folders/Files

Fig. 5. The technical support of PWM and PWL

P P A

V is u a l iza t io n

B D I a g e n t

T h re a d s H T T P

F o ld e rs / F i le s

P P A

V is u a l iza t io n

B D I a g e n t

T h re a d s H T T P

F o ld e rs / F i le s

P P A

V is u a l iza t io n

B D I a g e n t

T h re a d s H T T P

F o ld e rs / F i le s

P P A

V is u a l iza t io n

B D I a g e n t

T h re a d s H T T P

F o ld e rs / F i le s

R P M

Fig. 6. The technical support of a PPA

On the other hand, the technical support for a PPA is illustrated in Figure 6. Firstly,
Folders/Files management in a PPA is used since a PPA has to manage its private
abilities (functions) and knowledge. Some systems may use databases to maintain
data records; however, in our system, we prefer the use of XML files. The benefits of
using XML to maintain data records are that (1) the data records are application
independent because XML has an application-independent data format; (2) an XML
format file is an object-oriented database; and (3) removal of third party database
products avoids possible licensing problems. Secondly, Thread and HTTP are major
technologies we use in a PPA. Because of the use of threads (a thread activates itself

 An Agent-Based Collaborative Emergent Process Management System 7

in a period of time, say every two minutes), a PPA can automatically do things (such
as perceiving events and performing activities). With the use of the HTTP protocol
(communication channel between PPAs), a PPA can communicate with another PPA
via an individual communication channel without considering any block such as a
firewall. Thirdly, BDI (Belief, Desire, and Intention) agent technology is employed in
the PPA to realize deliberative reasoning to achieve goals or perform activities for a
research project, BDI being a cognitive model of problem solving in humans [4]. In
our PPA, we use the concepts of “goal” and “action” to replace the concepts of
“desire” and “intention” respectively. From the beliefs (generated from the perceived
events or messages), a PPA can reason about the goals to “achieve” and, from this,
what actions to take. Finally, visualization technology is supported in a PPA since it
uses visual interfaces to interact with its human user so that the user can conveniently
and efficiently give inputs to the PPA and understand its outputs.

4.2 The Major Components

The major components in the emergent process management system are a PWM
(Process Workspace Manager) and a PPAF (Personal Process Agent Framework). The
PWM is a server side application that can manage the PWL (Project Workspace
Library) and provide services to reply to the requests from individual PPAs. The
PPAF is a generic process framework that provides infrastructure (such as knowledge
management, communication and interaction, deliberative reasoning and process
assistant visualization) for process problem solving. Human process participants can
configure the PPAF (by setting the private personal information) to a specific PPA.
After a PPA has been generated from the PPAF, the human process participant can
transmit private knowledge to the PPAF. Here, we describe the implementations of
the major components: the PWM including the PWL, the PPAF and, in turn, a PPA.

4.2.1 The Process Workspace Manager - PWM
The PWM consists of one table, two threads, and eight services. The table is the
“default index table” that maintains the identifiers and names of all PWs in the PWL.
The two threads are “index_by” and “perceived_by”. The thread “index_by”
automatically builds temporary index tables according to the keywords (such as PPA
name) in each time period (say two minutes). The thread “perceived_by”
automatically detects the changes (events) of every PW in each time period. The eight
services are:

• checkout: check a process workspace out, which will block
others from changing it

• checkin: check a process workspace in, which will replace the
original

• browse: send the process workspace to a client
• perceive: detect the events in a process workspace
• broadcast_new_PPA: tell others a PPA is joining
• naming: give a unique name for an object in a workspace
• knowledge_moniker: map a piece of knowledge to its accessible place
• plan_moniker: map a plan to its accessible place

8 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

When the PWM is started, it provides a user interface, which has a visual view to
display the PWL. For example, it could list all the research projects and PWs in our
example PWL application. Clicking the right mouse button in each research project
node activates a popup menu. We can open the process instance to view the detailed
information such as name, patron, created date and so on. Alternatively, we can view
the PWDG of the research project.

When clicking the “view process workspace graph” menu item of the popup menu,
a DPWG is displayed (Figure 7). This graph can not only show all PWs of an
emergent process instance, but also show the relationships between the PWs. For
example, from the picture, we know that process workspace PW12 has evolved from
PW1 and PW2, but is not used to generate other PWs. This interface can show all
PWs indexed by their identifiers and names or by other keywords such as the name of
the participant. It can list all events that are indexed by using the participant’s name. It
can show the checkout PWs, goals and activities.

Fig. 7. The display of the directed process workspace graph (DPWG)

4.2.2 The Personal Process Agent Framework - PPAF
The PPAF has a set of basic process functions defined in the management model
(Section 2). Those functions are divided into four layers, each of them being
responsible for relatively independent functions (left hand panel of Figure 8). For
example, the management layer is responsible for knowledge management (creation,
modification, sharing and deletion); the collaboration layer is responsible for
communication and interaction between PPAs; the automation layer is responsible for
perceiving events and performing activities; and the assistance layer for process
changes (creation, modification and deletion of process elements and relationships).

When a PPA is generated for a human participant, it exists in the EPMS
(Emergent Process Management System) persistently until its user kills it. From its
creation, the user can start a PPA, suspend it and recover it until it is killed. Once

 An Agent-Based Collaborative Emergent Process Management System 9

started, a PPA keeps working using its own BDI model [4] via threads. If suspended,
all its running states are kept so that they can be restored when the PPA is recovered.

4.2.2.1 The Assistance Module
The assistance module implements the “define” function for the agent user to create,
change or delete process elements and their relationships (Figure 8) in a PW. A visual
interface is provided for the “define function” to show a PW including its goals,
activities, constraints, artifacts and participants. When right-clicking the mouse
button, a popup menu is activated, listing the actions that the agent user is permitted
to do. For example, an agent user can create a new element, open an element or delete
an element. The agent user can also create a relationship between two elements, open
a relationship or delete a relationship. In addition, it can “checkout” a process element
to change its attributes (e.g. changing the element name, type), to perform or to
“check in” a process element to the PWM that saves the new element in the PW.

When a process element or a relationship is changed, two versions of the element
(the content “before changed” and “after changed”) are kept in the element version
list of the PW. When saved, the “perceived-by” thread of the PWM detects the
changes of the element, generates a new event and adds that event to the event queues
of the PPAs involved in this PW. After that, the old version of the changed elements
or relationships is saved to the old version of the PW by the PWM.

Fig. 8. The visual interface of the “define” function

4.2.2.2 The Automation Module
The automation module is the most important module of the PPAF. It is built to
implement the automation of goal achievement or activity enactment. It realizes the
“perceive” function and “perform” function of the PPAF. Figure 9 is the flowchart of
the automation module, also showing connections to the PWM and other PPAs. When
changes occur in the PWL, these are managed by the PWM and collaborations happen

10 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

between PPAs. The automation module has two parallel threads to perceive events
(changes) from the PWM and to receive messages incoming from other PPAs. The
detected events are put in the event queue with the detection time-stamped and the
messages are recorded in the message queue with a “receive” time-stamped.

An event is a data structure that contains not only the changed process element but
also the changing time and modifier. For example, it contains the “goal x has been
changed”, the time the change occurred, the participants who changed the element, as
well as the objective of the new goal “got_fund_support”. From the objective of the
element, if it is a goal or an activity, the automation module knows who is the
“expected_participant”. If this PPA is the expected participant, it begins to retrieve
the plan repository to find the appropriate plan, to fetch the parameters from an
artifact element and to realize the automation. If no private plan is available to do the
automation, the PPA can search the sharable plan advertised in the plan_moniker of
the PWM. If one is found, this PPA initializes an interaction (a negotiation) and then
sends a “request” message to the owner of the plan to request sharing of the plan. If
nothing is found, the automation module submits the event to the To-Do list and the
agent user can decide what to do for this event. The agent user may simply drop the
event by doing nothing or build a new plan to respond to such an event.

PWM

Other
PPAs

Event
queue

Message
queue

events

messages

A goal or an activity
is created or refined?

Am I the expected
participant?

y

Do I have a plan to
achieve the goal or

perform the activity?

y

Drop the event

n
n

Fetch the parameters of
the goal or activity and

then activate the
“perform” function

y

Is there a plan
advertised in the

plan_moniker

n

Initialize an interaction
(share) message and then
send the message to the

owner of the plan

y

Is this message related
to an interaction?

Parse the message and
reply to the message

according to the
protocol of the
interaction. The

content of the message
is generated from the
beliefs in the agent
internal knowledge
base (described in

Chapter 4)

y

Is the message
related to achieve a
goal or perform an

activity?

n
y

Submit it to the To-do
list

n

Automation Module PWM: Process
Workspace Manager

n

Fig. 9. The flowchart of the automation module

A message could contain structured (a defined .xml format) or unstructured (such
as a normal email) information. Unstructured information is directly submitted to an

 An Agent-Based Collaborative Emergent Process Management System 11

unknown message list (works as an email manager) and the agent user handles the
unknown messages. The agent user may reply to it or just delete it, or do something
else. For structured information, the automation module can parse it. If the message is
related to an interaction (e.g. another PPA makes a request to share plans), the
automation module can automatically reply to the message according to the
interaction protocol and the beliefs about itself and the requester.

4.2.2.3 The Collaboration Module
The collaboration module of the EPMS realizes the collaborative functions of the
PPAF. The collaboration module is supported by four layers of protocols as shown in
Figure 10. The Network Layer is the Transport Control Protocol (TCP). When a PPA
is started, it firstly creates a server socket in a default port (the default port number is
51666). If the default port number is not available (it may be used by another
application), the number is automatically increased by one and further attempts made
until a number becomes available. Then the PPA reads the IP address of the computer
on which it resides and sends a message to the RPM to inform the registration of
itself. The contents of the message contain the PPA name, IP address, server socket
port number, PPA email address and a description. When the RPM receives a
registration message, it activates its “broadcast_new_PPA” service to tell all other
registered PPAs about the joining of a new colleague.

The Content Layer uses the PWXML protocol. When a message is sent from one
PPA to another, the contents of the message are converted to a PWXML string or
stream. The receiver PPA can parse the stream and understand the contents according
to the DTD of the XML attached in a specific field (ontology) of the message. So the
receiver knows what it should do next according to its understanding of the message.
The Content Layer is supported by the Network Layer because the contents are sent
from one PPA to another PPA via a socket (the sender PPA creates a socket that
connects to the receiver’s server socket).

In t e ra c t io n La y e r

M e s s a g e La y e r

C o n t e n t La y e r

N e t w o r k L a y e r

P P A A

N e t w o r k La y e r

C o n t e n t La y e r

M e ss a g e La y e r

In t e ra c t io n La y e r

P P A B

In t ra n e t / In t e rn e t

Fig. 10. The collaboration module is supported by four layers of protocols

The Message Layer uses the Agent Communication Language (ACL). According
to FIPA [5], the content of a message can be wrapped by using the ACL protocol.
ACL works as an envelope and consists of fields such as performative, sender,
receiver, content and so on. The contents of the message are placed in the field of

12 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

content so that the Message Layer is supported by the Content Layer. A user interface
is provided by the emergent process management system for the Message Layer. This
interface is built for the agent user to send an ACL message to another PPA manually.

The protocols provided in the Interaction Layer are the Delegation protocol and the
Negotiation protocol. They are applied to the Interaction Layer to constrain the
messages for a delegation or a negotiation in an acceptable pattern. The
implementations of the protocols are their Finite State Machines (FSM). The
delegation FSM constrains the performatives of delegation messages and the
negotiation FSM constrains the performatives of negotiation messages so that the
receiver of a message can understand the message according to the protocols. Any
message that is not defined in the FSMs is not considered as a message of
interactions. An interaction message is wrapped by an ACL protocol in which the
ontology field is the name of the interaction protocol (delegation or negotiation).

4.2.2.4 The Management Module
The Management Module of the EPMS is built in PPAF, when a PPA is generated
from the PPAF, to assist the agent user to manage (create, open, modify, advertise and
delete) private knowledge. The human interfaces provided by the management
module are visualized interfaces.

Knowledge added by the agent user is categorized into three different types:
“public”, “group” and “private”. If the knowledge is “public”, it is automatically
advertised to the knowledge_moniker and accessible to all PPAs even if they are not
registered in a process. If it is “group”, it is automatically advertised to the
knowledge_moniker but only the group members have permission to access it
directly, other PPAs having to negotiate with the owner in order to share it. If the
knowledge is “private”, the agent user has to decide whether to advertise it to the
knowledge_moniker of if PPAs working in the same group are to be permitted access.

To add knowledge to the PPA, the agent user has to fill out a knowledge record - a
data structure. The attributes included in the knowledge record are identifier, category
identifier (because knowledge is categorized, such as law, financial, …), name,
created date, URL, public to (“public”, “group”, or “private”) and description. The
URL of the knowledge indicates the location of the knowledge and the protocol to
access the knowledge. The category identifier indicates to what category the
knowledge belongs. The “public to” of the knowledge indicates if this knowledge is
advertised to the knowledge_moniker and if the knowledge is directly sharable or can
be shared after negotiation. Knowledge can be harvested from the history of the
process performed, but is not yet implemented in the EPMS.

5 An Application - A Research Project Management System

Research projects in universities need to be managed so that project members
working in those projects may achieve common goals, join research activities, share
research plans and knowledge, share resources and share results. The managed
research projects can also be used by researchers to harvest process knowledge. A
research project is an example of an emergent process instance. Firstly, a research
project may have an initial goal and a series of briefly defined activities to achieve the

 An Agent-Based Collaborative Emergent Process Management System 13

goal, but the goal and activities are not completely specified in advance. They may be
changed, refined or mutated over time. Secondly, there is no predefined process
model that specifies a plan to achieve the project goal. Each instance of a research
project has to find its own individual solution. If we knew precisely how to carry out
research in advance, it would not be research. Next, the growing body of knowledge
drives a research project from its start to its termination. In any stage in a research
project, the knowledge obtained from previous activities governs the subsequent
activities. Finally, a research project may be terminated after obtaining a satisfactory
conclusion even if the initial research goal has not been achieved.

The EPMS is used to manage research projects. Firstly, the EPMS supports the
representation (process modelling: using a DPWG) and storage of the research project
evolution by controlling PW versions. The representation can be dynamically and
collaboratively accessed and modified by a team of research members. Secondly, the
EPMS supports executions of activities for research projects (process enactment:
using PPAs). A PPA can autonomously check out an activity from a PW for execution
and the results of the execution may cause a change to the PW. Finally, the EPMS
keeps track of the research project evolution after the research project is completed. A
visual interface is provided by the EPMS for researchers to review the project and a
process knowledge harvest function is provided to harvest process knowledge from
the completed research projects.

In this research project management application (RPMA as shown Figure 11), PWs
are used to maintain project activities and project documents. The PWM manages the
PWs. Each project member is equipped with a PPA to monitor the progress of
research projects. A PPA supports interactions between project members.

P M 1 P M 2 P M 3 P M 4…

P P A 1

P P A 2 P P A 3

P P A 3

P M : P ro je c t M e m b e r P P A : P ro c e ss P e rs o n a l A g e n t
P W M : P ro c ess W o rk s p a c e M a n a g er R P : R es ea rc h P ro jec t

P W M R P 1 R P 2 R P 3

…

…

Fig. 11. Project members perform project activities

5.1 Project Modelling

A project member creates a research project by creating an interface. A default
PW is then created for this project, with a default member group, a default role
“patron” and a default member of the project member who takes the role of

14 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

“patron”. When “open”, the list of all projects of this member can have items
appended, modified or deleted.

When a project from the project list is “open”, the user can see all their PWs in a
list view (Figure 12) or a visual view (Figure 8). When a PW is opened, a visual view
of the workspaces is displayed, as in Figure 12. New elements or relationships can be
added to the workspace by clicking the menu item in the popup context menu.
Existing elements or relationships can be modified or deleted.

Fig. 12. A list of research projects

5.2 Bridge Project Modelling and Enactment

When a process element or a relationship is created, modified or deleted, the event
can be perceived by the related PPAs. For example, if PPA “alin” is a member of the
workspace, the event must be perceived by PPA alin. Meanwhile, the perceiving
function of the PPA can see incoming messages from other PPAs because those
messages can trigger goals to be achieved, activities to be performed or new inter-
actions to be initialized. The events are automatically and dynamically perceived by
the PPA. Meanwhile, as intermediate results, they can be displayed (Figure 13) when
the agent user clicks the “perceive” menu item under the automation layer of the PPA.

5.3 Project Enactment

If an event is generated because of a change (created or refined) in a goal, the goal is
automatically matched to the goals of existing plans of the PPA. If there is a process
plan that can achieve the goal, the plan is executed (if more than one plan can achieve
the goal, the PPA chooses the plan that has the highest success rate to achieve the
goal). If there is no such process plan, the PPA checks the plan_moniker in the PWM.

 An Agent-Based Collaborative Emergent Process Management System 15

If there is no matched plan in the moniker, the event is converted to a to-do item and
is submitted to the agent user. Otherwise, this PPA initializes a negotiation interaction
with the owner of the plan in order to obtain permission to use that plan.

Fig. 13. The events of the PPA “alin”

5.4 Browse Project

The agent user or other permitted project members can browse a research project at
any time after it is created. They can view their records and the relationships between
them. Because the interface is visualized, the relationships between PWs and the
relationships between process elements are explicitly expressed (Figure 14).

Fig. 14. The visual interface of the whole copy of a research project

16 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

5.5 The Result Analysis

The application results are analyzed by asking some questions to the users who were
required to use the application. A group of researchers (four Ph.D students and three
research assistants) were invited to assess the RPMA casually for three months. Each
of them finally was required to complete an online survey (shown in Figure 15) with
the following thirteen questions:

Fig. 15. The survey of the RPMA

• How much do you think the RPMA speeds up the awareness of partners’
work?

• How much do you think the RPMA speeds up the understanding of what has
happened (without reading all workspaces) because of the visualization?

• How much do you think the RPMA speeds up the response to events?
• How much do you think the RPMA speeds up access to the latest versions of

knowledge?
• How much do you think the RPMA speeds up access to histories of

performed processes?
• How much do you think the RPMA speeds up interaction of knowledge

sharing?
• How much do you think the RPMA speeds up the gathering of related

information for processes?
• How much do you think the RPMA speeds up the “change” of processes?
• How much do you think the RPMA increases the proficiency of knowledge

management and sharing?
• How much do you think the RPMA enables streamlining of processes?
• How much do you think the RPMA reduces multiple sources of knowledge ---

“write once read many” concept?
• How much do you think the RPMA reduces the access times?
• How much do you think the RPMA saves the time and cost – travel and

subsistence, paper, postage, quality time, paper storage capacity?

 An Agent-Based Collaborative Emergent Process Management System 17

The final result shows that the overall assessment of the RPMA. To all questions,
more than sixty percent of the users give “positive” or “very positive” answer except
for the question 10. Considering the users are not paid testers, the results that can
claim to be objective. Later, sixty students who are going to study a subject of one of
the current authors will be invited to form several groups to assess the RPMA
casually.

6 Related Work

To manage emergent processes, different systems or researchers have made various
suggestions. Several related works [1,2,6] discuss the research of business process
(re)engineering. However, they focused on the management of routine processes (the
process has fixed goals or predefined solutions) rather than on emergent business
processes.

LiveNet [7] provides a web-based client/server architecture to support emergent
process management. It uses a workspace model to maintain the elements such as
goal, activity, artifacts, roles, participants and actions to support process participants’
collaboration and knowledge sharing. However, its functions focus on supporting
public work rather than personal work.

ADEPT [8] provides an agent-based (pure distributed) architecture to support
business process management. Each agent is assigned services that can perform tasks
of processes. Since different agents may be assigned different services, they have to
negotiate with each other to share them when performing a social task. We do not see
that this architecture supports the “emergence” of process goals and activities.

Debenham [9] proposed a hybrid three-layer BDI process agent conceptual
architecture to achieve emergent process goals. Each process agent works for one and
only one human process participant. It lacks functions to support human process
participants involved in emergent processes.

WORKWARE [10] provides a solution for managing emergent workflow. In
WORKWARE, workflows are no longer process definitions separated from process
enactment as in traditional approaches; they provide instead active support for
planning, performance and coordination of work based on a (more or less complete)
explicit process model. Consequently, they broaden the scope by including support
for more forms of coordination, with less structured process models. They also
incorporate planning as part of the process by integrating process definitions. This
approach does not, however, provide process enactment.

7 Conclusion and Future Work

The management solution for emergent processes proposed here combines a process
workspace (PW) that maintains process elements and their relationships for emergent
process instances plus process agents that automatically perceive changes in PWs and
perform activities defined in PWs. The system thus supports intertwined process
modelling and enactment. Moreover, the system supports process participant
collaborative work using the functions of knowledge sharing. Our further work will

18 A. Lin, I. Hawryszkiewycz, and B. Henderson-Sellers

focus on (1) providing process knowledge harvesting functions that support agent
users to collect process knowledge from processes performed earlier and (2)
providing a visual plan generator to help process participants to build new plans for
personal process agents at run-time.

Acknowledgements

We wish to thank the Australian Research Council for funding. This is Contribution
number 04/33 of the Centre for Object Technology Applications and Research.

References

1. Van Der Aalst W. M. P.. “Formalization and Verification of Event-driven Process
Chains”. Information and Software Technology, 41 (10): 639-650, 1999.

2. Marca D. and McGowan C.. “IDEF0: Business Process and Enterprise Modeling”, Eclectic
Solutions, 1992

3. Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation 6
October 2000. http://www.w3.org/TR/REC-xml

4. Bratman M. E.. “Intentions, Plans, and Practical Reason”. Harvard University Press:
Cambridge, MA, 1987

5. FIPA specification. “Agent Communication Language”.
http://www.fipa.org/specs/fipa00003/OC00003A.html

6. Georgakopoulos D., Hornick M., and Sheth A.. “An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure”, Distributed and Parallel
Database 3(2) 119-153, April 1995.

7. Hawryszkiewycz I. T.. "Knowledge Sharing through Workspace Networks". Proceedings
of the Special Interest Group on Computer Personnel Research (SIGCPR99), April 1999,
New Orleans (ISBN 1-58133-063-5), pp. 79-85.

8. Jennings N. R., Norman T. J., and Faratin P.. "ADEPT: An Agent-based Approach to
Business Process Management". ACM SIGMOD Record 27 (4) 32-39. 1998.

9. Debenham J. K.. "Three Intelligent Architectures for Business Process Management".
Proceedings 12th International Conference on Software Engineering and Knowledge
Engineering SEKE 2000, Chicago, 6-8 July 2000.

10. Jørgensen H. D. and Carlsen S.. “Emergent Workflow: Integrated Planning and
Performance of Process Instances”. Workflow Management '99, Münster, Germany, 1999.

Mobeet: A Multi-agent Framework for
Ubiquitous Information Systems

Nobukazu Yoshioka1, Akihiko Ohsuga2, and Shinichi Honiden3

1 National Institute of Informatics
2 Corporate Research & Development Center, Toshiba Corporation

akihiko.ohsuga@toshiba.co.jp
3 National Institute of Informatics and the University of Tokyo

{nobukazu, honiden}@nii.ac.jp

Abstract. In recent years, the rapid development of network infrastruc-
ture and the spread of terminals capable of network access have made it
possible to access networks at any place and at any time. Ubiquitous in-
formation systems, in which necessary information can be accessed easily
and safely at any place, are becoming an important issue. It is, however,
hard to design such distributed systems when the user uses many kinds
of terminals and migrates with these. That is, traditional approaches to
development of distributed systems have problems when the systems are
used in a ubiquitous environment. This paper proposes a new framework
for ubiquitous information systems. The framework includes three kinds
of agents: User Interface Agents, Programmable Agents and Service Me-
diation Agents. We can easily design ubiquitous information systems by
ensuring that these agents collaborate. In addition, in cases where dis-
tributed systems must be implemented on various networks and termi-
nals, it gives a high degree of flexibility to the systems. We also evaluate
the framework’s flexibility.

1 Introduction

In recent years, the rapid development of network infrastructure and the spread
of terminals capable of network access have made it possible to access networks
not only when you are home or at your office, but also when you are away. In
addition, network connections by cell phones or smart appliances have made
it possible for users who have not used PCs to use services or share informa-
tion through networks. The environment in which necessary information can be
accessed easily and safely at any place is called ”ubiquitous information sys-
tem”(UIS). The foundation for UIS is being formed in society. Under such back-
ground conditions, various services have appeared on networks and a massive
amount of information continues to be transmitted. Because of the standardiza-
tion of web services and the spread of broad-band networks by which we can
always connect our PC to the Internet, general users who previously had dif-
ficulty providing services themselves are now beginning to be able to provide
those services.

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 19–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 N. Yoshioka, A. Ohsuga, and S. Honiden

However, such web services include a mixture of services with varying degrees
of reliability and quality, and using them well has become difficult. Furthermore,
conventional web services are constructed based on the assumption that they will
be accessed through one PC, and are not prepared for the type of usage that
takes into consideration the above described network environments. Specifically,
users who traverse broad-band connections at home, portable terminals away
from the home or office, hot spot wireless services and LANs at the office, have
problems with today’s services, such as the presence of restrictions of available
places or terminals, or no availability of continuous services when they change
their location from one to another.

In this paper, we propose a new framework for development of flexible dis-
tributed systems in order to solve these problems using agent technologies. This
framework achieves UIS by asynchronous communications between three kinds
of agents, i.e. the user interface agent (UIA), the programmable agent (PA), and
the service mediation agent (SMA).

The organization of this paper is as follows. Section 2 introduces a web in-
formation search system as an application example of the framework proposed
in this paper. Section 3 summarizes the problems and challenges relating to UIS
as mentioned above. Section 4 describes the details of this framework and sec-
tion 5 describes the implementation of the framework. Section 6 explains how
to assemble a web information search system using this framework. Section 7
evaluates this framework and then discusses the relationship with conventional
systems. Section 8, the last section, summarizes this paper.

2 Application Example: Web Information Search System

For the purpose of describing and evaluating our framework, this paper discusses
a web information search system as a typical application example of UIS.

Here, a web information search system is a system that uses keywords spec-
ified by the user to search for related information on the web. Specifically, this
system uses a natural language analysis service, a synonym search service, some
search engines, web servers, HTML converter, content compression service etc.
on the internet. A natural language analysis service is a service that takes natural
language text as an input and returns the parts of the speech and the relation-
ship between the words; the HTML converter is a service that takes an HTML
file as an input and converts the content into plain text, PDF, CHTML format
etc. We assume that some search engines and HTML converter services exist
on the Internet. The server instability and usage situations of the user are the
determining factors as to which ones will be used.

Typical operations for this system are as follows. When the user requests a
search in the natural language form, a natural language analysis service is used
to extract keywords from this natural language expression and then a synonym
search is done to find related keywords. The search engine is used to find pages
related to these keywords and the links from this page are followed with filtering
to acquire those that meet the conditions. Finally, the HTML converter is used

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 21

to convert the acquired contents to an appropriate format for a user’s terminal
and search options, and they are put together, compressed and then returned to
the terminal.

When doing this, the user can continue the information search by using multi-
ple terminals, such as portable terminals and PCs. In order to make this possible,
it is necessary that searching and filtering can be performed on the server side.
Furthermore, the results need to be retained after the completion of the search
until the user requests their retrieval. Also, the user’s usage situation and request
can change while the information search is still being performed and the system
needs to be able to cope with such changes. For example, after searches have
finished, the system needs to respond to further filtering requests or changes in
search conditions. Therefore, we cannot use only notification mechanisms, such
as e-mail, but also need communication mechanisms with the user’s terminal
and the system.

3 Challenges Pertaining to UIS

This section analyses the problems arising when a conventional method is used
to develop a distributed system that meets UIS, and clarifies the challenges that
should be overcome by the framework to resolve such problems.

Generally speaking, the following problems arise when using a client/server
model (abbrevated to C/S) system to develop software for UIS as mentioned in
section 1.

Problem 1: It is difficult to accommodate and port to various terminals.
Problem 2: It is difficult to cope with changes in the location and data struc-

ture of the service.
Problem 3: It is difficult to select an appropriate service each time.
Problem 4: It is not easy to add new type of services.
Problem 5: It is difficult to cope with situations in which the user environment

or the service is unstable. In addition, in such situations, the usability of the
software becomes poor.

Problem 6: Since there is no mechanism for automating the processes accord-
ing to the situation, usability becomes poor for a terminal with a limited
interface.

These problems are caused by the fact that the software on the client side in-
cludes the details of access to services on the server in addition to the user
interface.

Problem 3 and the changes in the location of services mentioned in problem
2 can be resolved by separating the service selection portion from the client by
using a Broker pattern [3] or a facilitator that mediates an appropriate service.
However, the other problems cannot be coped with by just separating the service
selection component as an independent structure.

In order to use different services and terminals depending on locations and
situations, the following problems need to be resolved.

22 N. Yoshioka, A. Ohsuga, and S. Honiden

Problem 7: It is difficult to create functions to cope with various situations in
advance.

Problem 8: It is difficult to cope with changes in situations on the user’s side.
Problem 9: It is impossible to cope with changes in the terminal that the user

is using. Therefore the process cannot be continued over multiple terminals.

For problem 9, a directory service can be used to determine which terminal the
user is using. However, even in such a case, the process cannot be continued on
multiple terminals.

Furthermore, the following problems need to be resolved in order to use
services without worry.

Problem 10: When the user wants to reuse existing local services, such as intra-
net services, in ubiquitous open environments, it is difficult to add security
functions to the services.

Problem 11: It is difficult to protect user information.

The Three-tier Model [1, 2] is a software structuring method that separates the
logic portion that implements the software functions from the client portion
for the purpose of overcoming various problems arising in the C/S system. In
this model, the structure of the program in the distributed system is divided
into three layers, i.e. the client layer, the domain layer and the database layer
(Figure 1 (a)). The client layer is a program that directly receives instructions
from the user, and the domain layer is a program that processes and man-
ages applications and transactions. This layer also executes the processing re-
quested by the user and mediates between the user and the data to be pro-
cessed. The database layer manages various data, such as customer information
and employee information, and directly accesses the data when requested by an
application.

Some of the aforementioned problems can be resolved by using this Three-
tier Model architecture. Having the logic portion be independent increases the
portability of the client portion, which makes it possible to solve problem 1. Also,
the introduction of the intermediate layer increases the degree of independence

(a)Three-tier Model

Client layer …

Domain layer …

DB layer …

PC

PCPC

User A User B

PC
PC

DBMS

Legeds:
PC: Private Component
SC: Shared Component

(b)Three Agents Model(Our Model)

change devices
migration

UIA UIA

SC
SC

SC
Agent Pool …

User Teminals …

Web Services …

PA

PA

PA

PA

Service Service

<<create>>

SMA

SMA UIA: User Interface Agent
PA: Programmable Agent
SMA: Service Mediation Agent

PA

<<create>>

Fig. 1. Three Tree-tier Model and Three Agents Model

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 23

between the client and the service, which, compared with conventional ways,
makes it easier to do things such as coping with the changes in the service
structure in problem 2, adding new services in problem 4 and adding security
functions in problem 10. However, the other problems 5-9 and problem 11 cannot
be dealt with by conventional structuring alone.

In order to solve these problems, a framework that overcomes the following
challenges is needed.

Challenge 1: It can cope with the instability of terminals and servers.
Challenge 2: It can easily accommodate various situations.
Challenge 3: It has a mechanism for automation/substitution of processing

according to the situation.
Challenge 4: It can cope with changes in the situation on the user’s side.
Challenge 5: It can continue processing over multiple terminals.
Challenge 6: It has a mechanism for protecting user information.

4 Multi-agent Framework: Mobeet Framework

4.1 Overview

The framework proposed in this paper is configured with three kinds of agents
(Figure. 1 (b) and Figure. 2). These software agents are expanded versions of the
components in the three layers of the Three-tier Model described in section 3.
In this paper, agents corresponding to these layers are called the User Interface
Agent (UIA), the Programmable Agent (PA) and the Service Mediation Agent
(SMA). An overview of each agent is given below.

UIA: The UIA provides an interface for the user. In addition, it detects the
user’s situation and copes with his/her various situations. Upon receiving the
user’s request, it considers the situation at the moment and outputs a script that
carries out the user’s processing. For the purpose of achieving these functions,
the UIA contains a logic language processing system (hereafter referred to as
“inference engine”). In order to cope with various situations, the system designer
describes behaviour of the agent corresponding to such situations by using logic
language rules (hereafter referred to as “reasoning rules”).

This inference engine is capable of outputting a script and the UIA can
execute this script. Using this capability, it inspects the current situation and
the user’s request as a goal, carries out inference and can output a script as
a sequence of actions to achieve the goal. For example, in the case of the web
information search system wherein the user’s request is a restaurant search, it
infers that restaurants serving lunch in the vicinity should be searched for, and
then outputs a script for this search. The output script is executed as a PA
described below.

The reasoning rules defined at the UIA are event driven so as to be able
to cope with changes in the situation. That is, in addition to when there is
a direct request from the user, relating rules are reevaluated when the values

24 N. Yoshioka, A. Ohsuga, and S. Honiden

Web Service

Web Service

User Interface Agent (UIA)

Programmable Agent (PA)

Service Mediation Agent (SMA)

Web Service

Agent Pool

Fig. 2. Overview of a framework

ProgrammableAgent

UserInterfaceAgent

AgentPool

Search Request

User
1: <<create>> 6: result

2: service request

3:<<create>>

5: result

4: request

ServiceMediationAgent

Fig. 3. Collaboration between Agents

of the predicate defining the situation have changed. This mechanism makes a
system autonomous in coping with changes. Using this mechanism, for exam-
ple, when a user in the outdoors goes back to his company office in the middle
of an information search, the system may sends the results to the company’s
computer.

PA: The script (PA) output from the UIA is executed as a mobile agent mi-
grating between hosts. The PA copes with terminal instability and changes in
the using terminal of the user. This is because the agent can execute the actions
after migrating from the UIA onto a server host called an “agent pool”. The PA
communicates with other agents by using the Agent Communication Language
(ACL [4, 5]). This allows for an increase in independence between the agents and
prevents unnecessary leakage of user information by increasing the autonomy of
each agent.

SMA: The SMA is an agent that actualizes the request from the PA. This agent
is dynamically synthesized at the agent pool to cope with diverse services and
requests. Components that describe logic for using web services are registered
in the agent pool and the agent pool responds to requests from the PA by
synthesizing an SMA that is a group of components that meet the request.
For example, upon receiving a web information search request in the form of
a natural language input from the PA, the agent pool synthesizes an SMA to
actualize the request by combining components that generate search keywords
from the natural language and components that search web information using
the search keywords.

Thus synthesized, the SMA is then executed by the framework. Multiple com-
ponents having the same specifications can exist; the mechanism is such that an
error resulting from calling a component will lead to calling another component
having the same specifications. For example, when there is no response from a
search engine and an error occurs, this mechanism automatically copes with this
error by calling a component that uses a different search engine.

Figure 3 is a UML representation of the collaboration between these three
agents and the agent pool. All the agents have a mechanism for sending/receiving
asynchronous messages and can communicate with each other by using the ACL.
Typical operations for this framework are as follows.

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 25

1. The user sends a search request to the UIA. Using this as a goal, the inference
engine of the UIA is called. In the case of a web information search, the goal
is a search request whose arguments are the search keywords

2. The framework of the UIA defines the current state as a predicates and
then infers the goal. At this time, a script (PA) is output from the executed
reasoning rules and is then executed. (Corresponding to 1 in Figure 3)

3. The PA sends a request to the agent pool. (Corresponding to 2 in Figure 3)
4. The agent pool generates an SMA according to the PA’s request. (Corre-

sponding to 3 in Figure 3)
5. The PA makes the actual request for the SMA generated by the agent pool.

(Corresponding to 4 in Figure 3)
6. The SMA coordinates web services to perform the service and return the

result back to the PA. (Corresponding to 5 in Figure 3)
7. The PA sends the result from the SMA to the UIA specified by the user.

(Corresponding to 6 in Figure 3)
8. The UIA presents the result to the user in the manner suitable for the

situation of the user and the terminal.

By communicating with each other, these three kinds of agents can flexibly
cope with changes in the user environment.

4.2 The User Interface Agent Copes with Situations

The UIA has the role of accommodating users in different and various situations
and coping with changes in their situations, as well as the role of protecting user
information.

The user’s situation depends on time and location, as well as the terminal
environment, such as network connection situations. For the purpose of using
these environments to infer the user’s intention, the framework is equipped with
a mechanism that monitors the terminal environment and provides information
in the form of predicates. Specifically, the time, location and network connection
situation can all be looked up as situation dependent predicates (environment
predicates).

For the purpose of calculating the user’s intention and situation from the
terminal environment, the framework is equipped with an inference mechanism
using a logic language. Its reasoning rules include scripts that are output when
the applicable conditions and rules are met.

The format of a rule is “Head :- Guard | Body {Script}.”. The grammar
of the head and the body in the rule is the same as that of the Prolog. The
guard part is the same as the GHC (Guarded Horn Clauses [6]) of the parallel
logic language, and the conditions for applying this rule are described as an
arithmetical equation.

The inference engine is activated when a new goal is thrown with a request
from the user or when a new goal from the PA is thrown. After reasoning, all
the scripts related to the applied rules are combined to constitute a new PA. In
addition, whenever this framework changes the environment predicates, inference

26 N. Yoshioka, A. Ohsuga, and S. Honiden

is performed so that the behaviour can be determined in response to changes in
the situation.

4.3 Execution of the Request by the Programmable Agent

The PA executes the request from the user while coping with instability in the
user’s terminal. It also copes with switching the terminal that the user is using.
In order to do this, a script contains instructions for autonomously migrating
between hosts.

Potential causes of terminal instability include power loss and network dis-
connection due to changes in the location of users. For example, in the case of
a web information search, the user may turn off the portable terminal or the
network may be disconnected because the terminal has changed its location. In
order to cope with such instability, the PA transfers the necessary information
to the agent pool after receiving it from the UIA. The PA then executes the
given request.

The script includes an abstract service request to realize user requests. What
actualizes the abstract service is an SMA, which is explained in section 4.4. For
this purpose, the script is equipped with functions to search for necessary services
and obtain their addresses. The actual search for services and the generation of
the agent (SMA) that executes the service is performed by the agent pool. The
PA searches for necessary services and asks the SMA thus found to perform the
service by sending a request message in the ACL. For this purpose, the script is
equipped with commands for communicating with any agent using the ACL.

The PA uses the ACL to send user information to the SMA. By using dif-
ferent performatives, the user information presentation request from the SMA
can be expressed not only as an unconditional request but also as a conditional
request specifying added benefits obtained by presentation. In response to the
user information presentation request, the PA can communicate an intention
of rejection by using “refuse” as well as an intention of presentation by using
“inform”.

4.4 Actualization of the Service by the Service Mediation Agent

The SMA is synthesized by the agent pool and executed automatically. In the
case of a web information search, various requests are possible depending on, for
example, whether the related information is specified by a natural language or
by a string of keywords. If all services are fixed in advance to cope with such
diversity, it is not possible to flexibly cope with request changes and additions.
In view of this, the present framework copes with this problem by defining a
necessary service as a group of components (service components), synthesizing
it by automatically combining these components, and then executing them one
after another. To this end, for each service, the input specifications and the
output specifications are defined as types with a meaning, in addition to the
service name to be implemented. When a service search request comes from the
PA, the service that is suitable for the request is synthesized from a group of
components having the specified service name.

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 27

For example, in the case of a web information search service, the service
component for generating keywords from a natural language is defined by the
following specifications:

Service name: Information search
Input: String:Natural language text

Output: list of String:Keywords

This means: the input/output specifications are defined in the “type:meaning”
format, the input of the aforementioned component is String type natural lan-
guage text and the output is keyword expressed as a String type list.

When components with such specifications are found, the agent pool collects
a group of service components that can provide output from the input specifica-
tions of the service requested by the PA and designates this as the SMA. These
service components are assembled by using one or more web services.

The SMA is executed by the framework in the following manner. First, the
framework receives data from the PA that meets the input specifications of the
service and executes a component that uses the data as input specifications.
When the output of the component is calculated, another component that has
the necessary inputs is executed. Finally, when all the outputs requested by the
PA are obtained, the obtained values are returned to the PA by using the ACL.
If the service components to be executed run out before all the outputs are
obtained, then an ACL failure message is sent.

Each service component can use the API for migration in order to cope with
instability in the services used. The migration request in a service component
implies migration of the group of components that constitutes the SMA, and
the execution of the components is continued at the migration destination. In-
stability of services can be due to instability in the server or instability in the
network; in the former case, the service is called remotely. In the latter case,
after the migration of components, the service is used locally.

4.5 Coping with Changes by Means of Inter-agent
Communications

When the situation of the user changes, the UIA detects the change and alters
the request that is already being executed. The PA responds to this change
by altering its own behaviour using the re-inference (re-planning) function. The
change is propagated by the ACL.

An example of a change in the user situation is a change due to a locational
change of the terminal when the user who has been away comes back to the office.
This change can be inferred by the change in the environment of the terminal
that the user is using.

The UIA has the function to infer the user’s situation when the environment,
such as the time and location, has changed. Specifically, a change in the envi-
ronment results in redefinition of the environment predicates and the reasoning
rules are reevaluated. Based on this inference, a new script corresponding to the

28 N. Yoshioka, A. Ohsuga, and S. Honiden

change is generated to cope with the change. The generation mechanism is the
same as the case of new PAs described in section 4.2.

This coping action includes altering the request as well as altering parameters
such as search options. For example, when the user comes back to the office,
changes are made so the user can view the search results at the terminal in the
office. Such changes in the request are managed by using the PA’s re-planning
function as described below. That is, the new request is sent by means of the
ACL to the already executing PA; upon receipt of this, the PA activates the
inference engine, using this request as a new goal (re-planning). If this inference
needs user information, migration to the terminal occurs. The inference for the
new goal is conducted here and a new script is output. This script becomes the
definition of the new behaviour of the PA.

5 Implementation of the Framework

The framework is implemented by using Plangent [7] for the UIA and PA, and
using Bee-gent [8] for the SMA. Although Plangent has a unique feature which
is that it generates scripts being agent behaviour from Prolog programs, the
scheme of our framework cannot be implemented in its original form by Plangent.
Specifically, Plangent has limitations in terms of the activation of the inference
engine and the description of the reasoning rules. The following is the format for
rules (action definitions) in Plangent.

action(_,_,_,[script],[Precond], [Postcond], [Manifestation]):-Body.

Here, the list of postconditions (Postcond) corresponds to the goals and the
inference engine is done in such a way that the preconditions (Precond) are met.
The body part is the same as common Prolog. The user information called “info
file” can be accessed at the manifestation string to view/update the information.

The inference engine of Plangent is not event driven; it is driven when a
goal is put in. Furthermore, since the guard cannot be described, the rules to
be inferred cannot be determined without a goal. In order to cope with this, a
dummy goal “response” is given when the situation changes1 so as to activate
the inference engine. Also, conditions corresponding to the guard are described
at the beginning of the body of this predicate so that an appropriate action
definition can be selected.

In addition, Plangent does not support ACL. Therefore, a mechanism for
sending/receiving an ACL used by Bee-gent is prepared, so that the ACL can
be read/written from inside of a script and also from the UIA to communicate
any other agents.

A Plangent script has a function to rewrite itself (newgoal), which can be
used to cope with changes in the user’s situation. When a notification of changes
in the user’s situation is received while the script is executed, the situation is

1 Changes in the environment are checked at a time interval in the UIA.

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 29

written on the agent’s own information (agent info) and the newgoal is executed
to regenerate itself.

The service components of this framework are made to correspond to state
classes in Bee-gent. Bee-gent has a mechanism that executes a specific state
(mental state) when necessary conditions are satisfied. Using this mechanism, all
the service components are defined as mental state classes, and the input/output
specifications of the framework are made to correspond to preconditions/post-
conditions of Bee-gent. The planner of Bee-gent is used to implement the SMAs
operations. For each mental state class, this planner mechanism can set goals for
which the class is activated and for the goals to be executed next. The number
of state classes that can be executed simultaneously is set to 1, so that state
classes having the same precondition are selected one after another by changing
the priority (utility value) for goal selection.

For the purpose of picking up a group of SMA service components, the in-
put/output specifications of each state class are managed by a definition file that
is different from Bee-gent. In the external command of Plangent, for a service
search, this file is looked up and necessary service components are collected to
generate Bee-gent mediation agents.

6 Implementation of a Web Information Search System

Using the framework described in section 4, a prototype for a web information
search system was implemented. An overview of the implementation is described
below.

The action definition of Plangent can be used to define rules for inferring the
user situation and rules for generating scripts. Figure 4 is a portion of the action

info (_,_,_,[goAgentPool(AgentID), webSearch(AgentID, SmartOption,Results),
 convert(AgentID, Results,’CHTML’,CPages), sendResults(AgentID,CPages,UAgentID)],
 [],[search(Option)], %% precondition is null, postcondition is search
 [assert(info(agent, dummy, dummy, searchOption(SmartOption), unknown)] %% agent knowledge
):- place(outdoor),agent(AgentID),masterAgent(UAgentID),outdoorOption(Option,SmartOption).
outdoorOption(O1,O2) :- timeIsNoon, ... %% check the user situation and generate options
timeIsNoon:- info(form,_,_,environment(time,[Hour|_]),Hour >= 11, Hour < 14. %% General Rule

Fig. 4. An Example of Action Definitions using Plangent

webSearch($myname, @option, $results) {
 @inputs=(getKeyword(@option), "String:KeyWords","List:SearchOption");
 @outputs=("Contents:WebPages");
 $agentName = lookup("SearchWebInfo", @inputs, @outputs);
 sendMessage("request", $agentName, $myname, @option);
 waitMessage();
 @mes = receiveMessage($agentName); ...

Fig. 5. An Example of Script Definitions using Plangent

30 N. Yoshioka, A. Ohsuga, and S. Honiden

Table 1. An Example of Service Parts

Component: KeywordGenerator
Service: SearchWebInfo

Input: String:NLang
Output: String:KeyWords

Component: SearchEngine A
Service: SearchWebInfo

Input: String:KeyWords
Output: List:URL

Component: SearchEngine B
Service: SearchWebInfo

Input: String:KeyWords
Output: List:URL

Component: ExtractWeb
Service: SearchWebInfo

Input: List:URL, List:SearchOption
Output: Contents:WebPages

definition. The user’s situation in terms of whether or not he is away from the
office is inferred by “place” in the body of this definition; if the user is away,
“outdoorOption” sets optimum options. When this action definition is applied, a
PA calling “goAgentPool”, “webSearch”, “convert” and “sendResults” is output.
This PA migrates to the agent pool (goAgentPool), searches web information
(webSearch), converts the results to the terminal’s format (convert) and sends
them to the UIA (sendResults). Figure 5 shows how the action for searching web
information (webSearch) is actually defined. In this script definition, “lookup”
external command is used to search for an SMA that executes the service of a
web information search.

A web search engine service, a content conversion service that converts the
HTML to various formats, and data compression service are newly assembled
for this system. Web services used for the web information search service are
of four kinds, i.e. a natural language analysis service, a synonym search service,
a search engine and a web server. Specifically, these web services are used to
prepare the SMA’s service components. Table 1 shows definition examples of
the input/output specifications of the SMA service components. Among these,
the service component that generates keywords from a natural language (Key-
wordGenerator) is implemented by combining two web services, i.e. a natural
language analysis service and a synonym search service.

7 Discussion

7.1 Evaluation of the Framework

This section describes how the framework presented in this paper meets the
challenges mentioned in section 3.

Meeting challenge 1: This framework can cope with instability on the termi-
nal side by transferring the PA to an appropriate server. This transfer control
needs to be described in the PA generation rules that the UIA possesses, and the
programmer has to specify it explicitly. Instability on the service side is handled
by transferring the SMA or replacing the service component to be executed.
Specifically, it is possible to cope with network instability by transferring the
SMA to the host providing the service or to a host experiencing stable commu-

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 31

nications. Upon error termination of the service component calling the service
remotely, the framework can execute an alternative component and thus cope
with a service down in a semi-automated manner.

Meeting challenge 2: This framework copes with diverse requests by dynam-
ically generating the request details and the usage order of the services. Since
the response to the user’s requests are defined and added by the reasoning rules,
the existing definitions do not have to be changed for a new request.

There can be multiple combinations of services for the same request; this can
be handled by SMA’s service component selection mechanism by means of auto-
matically calling different service components having the same input type. The
addition of a new service can be handled by simply registering its components
without altering existing components.

Meeting challenge 3: This framework contains an inference engine in the UIA
as a mechanism for automating various processes according to the situation.
Also, predicates for checking the terminal environment are made available for
evaluating the situation.

In order to carry out processing in the place of the user, a script is output
as the result of the inference and then made executable. Using this mechanism,
batch processing, such as format conversion of all the collected texts at once,
can be performed. If this processing fails, another processing can be selected by
means of re-planning. However, when the reasoning rules for the selection are
on the terminal side, returning to the terminal is required. If the terminal is not
connected at that time in this case, the processing cannot be continued. That
is, the managing method for the reasoning rules of the UIA is limited.

Meeting challenge 4: In order to cope with changes in the situation on the
user side, situations and instructions corresponding to them are described as rea-
soning rules and asynchronous communications between agents are made pos-
sible. For such reasoning rules, the event driven logic language is adopted to
allow inference responsive to the situations. Also, the ACL is made available for
sending/receiving messages for smooth cooperation between the agents. Further-
more, re-planning is introduced to the PA as a mechanism to alter its behaviour
in response to changes.

When re-planning involves the necessity to cancel existing processing, scripts
have to be carefully custom-made. For example, when there is an interdependent
relationship between a series of PA requests, such as in transaction processing,
it is difficult to define the precise scripts.

Meeting challenge 5: In this framework, the PA is designed as a mobile agent
and continuous processing over multiple terminals is achieved through the PA
carrying around the processing states. For example, the PA that makes a search
request is generated at the portable terminal and placed on standby on the server
side; another PC can call this PA back and the results can be viewed at another
terminal. This way, the user side can provide processing, such as filtering of the
search results, in the form of a script.

32 N. Yoshioka, A. Ohsuga, and S. Honiden

Meeting challenge 6: This framework supports the use of the UIA’s inference
engine to infer the user situation and supports flexible exchanges of user infor-
mation by means of the ACL. Because of these, the system can be designed in
such a way that user information is treated appropriately.

When user information is needed to use a service, an information query mes-
sage from the SMA to the PA can be used. Although this is not used in the
example, for nonessential information, the message “user information will be
requested if you need to know this information” can be expressed by using a
query-if message. In response to a query, the example is implemented in such
a way that the PA returns messages such as “inform” or “refuse”. However, a
scheme, such as content language, for this purpose is not defined, which increases
the programmer’s burden if complex information needs to be exchanged.

In addition, the framework uses user information defined at the UIA to derive
appropriate actions for the user at the terminal side, thus maintaining higher
security of user information compared with the case in which the same processing
is done at the server side.

7.2 Functional Comparison with Conventional Methods

In this section, we compare our framework with a PAC agent framework [9] from
the viewpoint of the UIS.

The PAC agent framework is a framework for a distributed system that con-
figures the system with three kinds of agents, i.e. the Top-level, Intermediate-
level, and Bottom-level. These agents cooperate with each other by using three
interfaces called “Presentation”, “Abstraction” and “Control” to constitute a
flexible distributed system. These three interfaces increase independence between
the agents and secure flexibility in terms of portability and configuration. Fig-
ure 6 shows the structure of this framework. The top-level agent accesses the
repository and is in charge of data exchanges necessary for the system. The
bottom-level agent allows users to display and manipulate the results, and the
intermediate-level agent mediates between the bottom-level agent and the top-
level agent and sends necessary data from the top-level to the bottom-level.

In principle, this framework is designed to provide various displays and ma-
nipulations to one resource, and the three kinds of agents constitute a tree-like
structure with the top-level being the root. However, this structure does not allow
flexible responses in application domains where various services exist. Even if the
Broker pattern is used to introduce a mechanism for selecting appropriate ser-
vices, flexibility such as altering the procedures for cooperation between services
cannot be implemented. Our framework dynamically derives the behaviour of the
SMA by synthesizing components and selectively executes the components. This
makes it possible to cope with a diversity of services and instability in the servers.

The PAC agent does not specifically prescribe where each agent is exe-
cuted, how cooperation is done, and a mechanism for autonomy inside an agent.
Therefore, when assembling a flexible system by making the agents cooperate
with each other, it is hard to design it. In addition, the instability of servers
or clients and dynamical changes of user’s situation are not taken into consid-

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 33

PAC Agent PAC Agent PAC Agent

PAC AgentPAC Agent

PAC Agent

PAC: Presentation, Abstraction, Control

Top-level …

Intermediate-level …

Bottom-level …

repository

Fig. 6. PAC Agent Framework

eration; i.e. there is no support for these in the framework. In comparison, our
framework focuses on a domain of UIS; it prescribes not only the roles of the
three kinds of agents but also the mechanisms to perform these roles. Specifically,
a combination of an asynchronous communication mechanism, ACL, inference
engine, agent transfer mechanism, PA’s re-planning mechanism etc. allows this
framework to easily cope with cooperation between the agents, instability in the
servers and changes in situations.

7.3 Related Work

Our framework provides more flexibility than a conventional C/S system, Three-
tier Model or PAC Model. There are other architecture styles and design patterns
of these models. Some patterns are proposed for flexibility. For example, Broker
pattern, Reflection pattern, Client-Dispatcher-Server pattern and so on are de-
scribed in [3]. In addition, Strategy pattern is described in [9]. In contrast, we
can regard our framework as a pattern for ubiquitous environment. Our frame-
work is more flexible than use of only conventional patterns. In addition, the
conventional patterns, such as the Broker pattern, are used as complementary
to our framework.

BDI agents and distributed multi-agent systems have been proposed to cope
with changes of environments flexibly [10, 11, 12]. For each BDI agent, envi-
ronments can be modelled in its Belief and its behaviour is derived using an
inference engine. In addition, agents in distributed multi-agent systems can ne-
gotiate each other for the coordination flexibly. However, it is difficult to design
a system responding to various changes because we need to make each agent
with high intelligence individually. On the other hand, our framework consists
of three kinds of agents having each role and the agents cooperate with each
other keeping each role to realize flexibility. Consequently, it is easier to make a
design plan and to design the system using our framework than is the case with
other multi-agent systems.

Some mobile agent platforms [13, 14] have been proposed for mobile com-
puting, especially for resource-limited devices. LEAP is a FIPA-compliant agent
platform sufficiently lightweight and powerful to execute both on mobile devices
and on enterprise servers. The extentions also have been proposed for nomadic
users [15], for ad hoc networks [16] and for handheld devices [17]. Although these
platforms and extensions are for ubiquitous computing infrastructures, no sup-

34 N. Yoshioka, A. Ohsuga, and S. Honiden

port for application level design using such agents is provided. However, we can
adapt the platforms for UIA’s mobility to support nomadic applications.

Automated or semi-automated composition mechanisms of Web Services have
been proposed [18, 19, 20]. Narayanan and Mcllraith [18] use DAML+OIL, which
is a description logic-based language, for describing the formal semantics of Web
services. The mechanism described in [18] can compose the sequence of Web
services satisfying a user’s goal using each service semantics. We can use such
mechanisms to synthesize SMAs. In other words, our framework is consistent
with Web Services as service parts of SMA.

8 Conclusions

In this paper, we have proposed a new multi-agent framework to make ubiquitous
information service available easily. This framework is for distributed system
consisting of three kinds of agents: UIA, PA and SMA. The UIA monitors the
client environment and copes with changes in the situation on the user’s side. The
PA is a mobile agent that is created from reasoning rules and executes a series
of requests from the user. The SMA is an agent that is composed from service
components based on specification of a requirement to provide a service for a
PA. PA responds to change of user terminals and instability of user environment,
and SMA responds to instability of the server side.

Further work includes construction of various systems for UIS to elaborate
our framework and CASE tools to develop the system easily.

References

1. C.A.Aarsten,D.Brugali and G.Menga: “Patterns for Three-Tier Client/Server Ap-
plications”, Proc. of PloP 1996 (1996).

2. R. Hirschfeld: “Three-Tier Distribution Architecture”, Washington University
Tech. Report No. wucs-97-34 (1997)

3. F.Buschmann, R.Meunier, at.el.: Pattern-Oriented Software Architecture: A Sys-
tem of Patterns, John Wley&Sons,Ltd. (1996)

4. T.Finin, R.Fritzson, D.McKay and R.McEntire: “KQML as an Agent Communi-
cation Language”, Proc. of CIKM’94, ACM Press, pp.456–463 (1994)

5. Agent Communication Language, http://www.fipa.org/repository/aclspecs.html.
6. J.Tanaka,K.Ueda,T.Miyazaki,A.Takeuchi, Y.Matsumoto, and K.Furukawa:

“Guarded Horn Clauses and Experiences with Parallel Logic Programming”,Proc.
of Fall Joint Computer Conference ’86, IEEE Computer Society Press, pp. 948–954
(1986)

7. Plangent, http://www.toshiba.co.jp/plangent/index.htm.
8. Bee-gent, http://www.toshiba.co.jp/beegent/.
9. E.Gamma, R.Helm, R.ohnson and J.Vlissides: Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley Longman, Inc. (1997)
10. J.M. Bradshaw (Ed.): Software Agents, MIT Press (1997)
11. M.J.Wooldridge: “Agent Theories, Architectures, and Languages: A Survey”,

LNAI, Vol.890, Springer-Verlag, pp.1–32 (1994)

Mobeet: A Multi-agent Framework for Ubiquitous Information Systems 35

12. A. S. Rao: BDI Agents: From Theory to Practice, Proc. of ICMAS-95, pp.312–319
(1995)

13. F. Bergenti and A. Poggi: “LEAP: A FIPA Platform for Handheld and Mobile
Devices”, Intelligent Agents VIII, LNAI, Vol.2333, Springer-Verlag, pp.436–446
(2002)

14. M. Laukkanen, S. Tarkoma and J. Leinonen: “FIPA-OS Agent Platform for Small-
Footprint Devices”, Intelligent Agents VIII, LNAI, Vol.2333, Springer-Verlag,
pp.447–460 (2002)

15. M. Laukkanen, H. Helin, H and Laamanen, “Supporting Nomadic Agent based
Applications in the FIPA Agent Architecture”, Proc. of AAMAS’02, ACM Press,
pp.1348–1355 (2002)

16. J. Lawrence, “LEAP into Ad-Hoc Networks”, Workshop on Ubiquitous Agents
held in AAMAS’02 (2002)

17. G. Caire, N. Lhuillier and N. Lhuillier, “A communication protocol for agents on
handheld devices ”, Workshop on Ubiquitous Agents held in AAMAS’02 (2002)

18. S. Narayanan and S.A. Mcllraith, “Simulation, verification and automated compo-
sition of web services”, Proc. of WWW’02, ACM Press (2002)

19. D. Wu, B. Parsia, E. Sirin, J.A. Hendler and D.S. Nau “Automating DAML-S Web
Services Composition Using SHOP2”, Proc. of ISWC 2003, pp.195–210 (2003)

20. E. Sirin, J.A. Hendler, B. Parsia, “Semi-automatic Composition of Web Services
using Semantic Descriptions”, Proc. of WSMAI 2003, pp.17–24 (2003)

The Analysis of Coordination in an Information System
Application - Emergency Medical Services

Wei Chen and Keith S. Decker

Department of Computer & Information Sciences,
University of Delaware,

Newark, DE 19716, USA
{wchen, decker}@cis.udel.edu

Abstract. There is an inevitable need for collaboration and coordination among
response organizations during the occurrences of emergencies. We attack the co-
ordination problem by analyzing intelligent agents’ organizational behaviours
and exploring a set of coordination mechanisms. This paper studies the appli-
cation of our coordination research to a small-scale Emergency Medical Services
(EMS) information system with response agencies modeled as organizations of
autonomous agents. Due to the excessive amount of information and the dynamic
change in the environment, the information decision process has become the
backbone of EMS. The significance of our extended set of GPGP coordination
mechanisms is examined under various environmental settings in this application
domain. This paper models the coordination among three organizations during
emergency responses to a set of small scale, concurrent incidents, like ambu-
lance calls, police calls and mixed calls with potential needs of transporting the
emergency victims to appropriate medical facilities. An EMS agent framework
is implemented, an integrated coordination algorithm is introduced, early exper-
imental results are presented and finally appropriate decisions are suggested for
the response organizations. This paper also briefly discusses the extension for the
management of emergency incidents to larger scale disasters.

1 Introduction

Our recent work has been involved with the reconceptualization and formalization of
the Generalized Partial Global Planning (GPGP) approach [1] to coordination for intel-
ligent agents. This approach is focused on the recognition of well-defined coordination
relationships (interdependencies) and the application of coordination mechanisms cho-
sen from a large enumerated space of potential mechanisms. To demonstrate that this
approach is truly a general one, we have applied it to several application areas, such as
Bioinformatics, Internet information gathering and EMS [2, 3]. In this paper, we focus
on modeling the coordination relationships present in EMS information systems and
examining the performance of elements in the space of coordination mechanisms.

Lots of attention has been focused on the research of response to disasters and
other large-scale emergent situations (e.g., earthquakes, hurricanes and terrorist at-
tacks), which require highly intensive communication, coordination and immediate re-
sponses to the changes of the environment. Aiming to simulate an entire disaster is one

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 36–51, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

The Analysis of Coordination in an Information System Application 37

candidate approach; however, this kind of top-down simulation is very complicated and
it is sometimes impossible to evaluate the research results unless one is faced with real
disasters. In this paper, we will focus at a lower level of granularity, where an EMS
system is a basic unit under the “big picture”. The extension from EMS to disasters will
be briefly discussed in Section 6.

Emergency Medical Service, EMS, is defined as a comprehensive, coordinated ar-
rangement of health and safety resources designed to provide expedient care to vic-
tims of sudden illness and injury. It covers all phases of care from first response to
discharge from a medical facility, and it includes prevention and education as well1.
An integral part of this system, prehospital EMS (often called out-of-hospital EMS),
plays a critical role in the effectiveness, efficiency, safety and quality2 of the entire
system [4]. This paper focuses on prehospital EMS, which is generally defined as the
response process from the start of incident to the hospitalization of victims. In EMS
systems, events happen rapidly and unexpectedly; resources move accordingly in the
same fashion; decision making is highly time-critical based on involving response or-
ganizations, institutions and even geographical cites. Information flow among the re-
lated entities needs to be highly effective; however, communication channels could
be impaired radically based on certain environmental changes, such as traffic jams
and power failures. Thus, effective coordination is key to EMS systems. This paper
models the coordination process in EMS and tries to figure out the best coordination
mechanisms.

There has been previous work about EMS. However, it either merely concentrated
on conceptual analysis without presenting much data [5], or just provided simple sim-
ulation results based on fixed, limited environmental settings according to the available
technologies at the time [6, 7] without potential extensions. Adequate amount of sim-
ulation results were provided in [8]; however, there is a lack of analysis of response
organizations’ task structures that deduce helpful rules as explained later in this paper.
Several modern approaches [9–11] focused on system development and ignored the ef-
fect of the actual coordination processes carried out by different emergency response
agencies. Although the most important goal of an entire EMS process is to save vic-
tims’ lives, different response agencies prefer their respective interests under this big
goal. For example, independent ambulance service companies try to minimize their
costs, police have to organize and control the overall situation (e.g., patrolling, clearing
roads/traffic or responding to police calls) instead of accompanying the victims all the
time, and hospitals have to care about the availability of open beds. Notably, an EMS
system is a perfect domain that well fits computational organization theory [12]. The
different response organizations by nature share the characteristics of heterogeneity,
goal-orientation, adaptiveness etc. However, the purpose of this paper is not to study
and improve the EMS organizations or the EMS models themselves; instead, the objec-
tive is to demonstrate the application and the performance of our extended set of GPGP
coordination mechanisms in this special information system—EMS.

1 For example, police are educated/trained with CPR.
2 Each of these system evaluation factors has a corresponding definition in the EMS model

introduced in Section 5.

38 W. Chen and K.S. Decker

Section 2 will introduce the GPGP approach in an abstract way. Section 3 will de-
scribe our EMS model. An experimental framework, which allows an analysis of the
performance of various coordination mechanisms, will be demonstrated in section 4.
Both analytical and quantitative results are explained in section 5. Finally, conclusions
and future work are stated in section 6.

2 An Extended Set of GPGP Coordination Mechanisms

Coordination in multi-agent systems is defined as managing interdependencies between
activities [13] and it addresses the special issues arising from the interdependency re-
lationships among multiple agents’ tasks. Assuming that each agent is capable of rea-
soning locally about its schedule of activities and possible alternatives [14], the key to
handling the interdependency is removing the uncertainty in agents’ task execution be-
haviours. GPGP is one possible approach [1] for coordination reasoning and it is based
on TÆMS (Task Analysis, Environment Modeling, and Simulation) [15], an abstract
modeling representation that represents task interdependencies quantitatively. We de-
fine an interdependency, or coordination relationship, as a relationship between a local
and non-local task (NLT) 3 where the execution of one changes some performance-
or utility-related characteristics associated with the other. Interdependencies are often
associated with the processes of information exchange. Thus, this definition of coordi-
nation also holds in information systems, especially when involving information extrac-
tion, gathering or searching processes performed by multiple information wrappers. For
example, cooperative searching peers within a P2P information system provide services
or referral and learn about each other through caching [16].

The above definition of interdependency gives rise to the following questions: (1)
how to represent the dependencies, and (2) how to manage the dependencies? For the
first question, in order to represent and reason about the features of agents’ tasks and
their system environments, such as worth-oriented goals, contingencies and the uncer-
tainties that arise when agents’ plans distributed over multiple agents 4, we developed an
Extended Hierarchical Task Networks (Extended HTN or EHTN) model [17, 18] to rep-
resent interdependencies. EHTN represents the changes in utility-based characteristics
of tasks, the impact of information flow on task enablement and the contingent impact
of task outcomes on control flow. We have proved an expressiveness theorem which
states that our EHTN is strictly more expressive [2, 17] than the traditional HTNs. For
the second question, we developed an extended set of GPGP coordination mechanisms
[3] to manage the interdependencies. Each of these extended mechanisms consists of
two parts: a pattern-directed re-writing of the EHTN and a coordination communica-
tion protocol specific to the mechanism. This extension of GPGP means a much larger
number of coordination mechanisms and the introduction of task structure alteration in
coordination process based on our new task representation. EHTN provides a quanti-
tative definition of a vector of measurable, utility-influencing characteristics, a method
that specifies how these characteristics accumulate as actions and explicit task relation-

3 A local task only belongs to its owner agent; a non-local task belongs to a remote agent.
4 Traditional HTNs can not represent these terms and features due to the lack of expressiveness.

The Analysis of Coordination in an Information System Application 39

ships indicating how task progress affects primitive action characteristics elsewhere in
the task structure. Based on EHTN, the extended GPGP approach addresses the coordi-
nation problem: utilizing these task features, which are uniquely available to the knowl-
edge representation method of our EHTN, to further modify the agents’ task plans and
to enable the communication among agents for coordination purpose.

We recast these GPGP mechanisms using our EHTN and proved that the GPGP
coordination processes for those coordination problems that can be represented with
our EHTN are deterministic. Using EHTN, we are able to represent a coordination
strategy problem:

Given k nlts ∈ NLT in E and M, find mi ∈ M

corresponding to nlti, that maximizes EV (E,mi, ...,mk).
(1)

The above equation addresses an important question: which mechanism to use under
a certain environmental condition; and it provides a method to choose the appropriate
coordination mechanism mi from the mechanism set M to maximize the user’s evalu-
ation function EV 5, given k non-local tasks (NLT) in a coordination environment E.
We are also able to project an integrated coordination problem that includes planning
and scheduling processes as explained in [2, 17]. The integrated coordination problem
points out that the key of a coordination process is to remove the uncertainty in the
involved agent’s task plans in order to get better schedules. The term, integrated, means
that planning and scheduling are incorporated together with coordination to form an
expanded coordination process, which will be described in a later paragraph when ex-
plaining Figure 1. As a solution to the projected problem, an integrated coordination
algorithm is presented as follows. GPGPDetect is a method that detects the coordi-

Queue
Incoming

Agent
Initialization

Domain Facts and Beliefs

Action

Plan File Incoming KQML messages

Outgoing KQML messages

Objectives

GPGP
Module

WITQ Queue
Task

Action Modules

Results Queue
PendingTask Templates

DECAF Task and Control Structure

Message Queue

Planner

Hashtable

Dispatcher

Action Queue

Scheduler Executor

Agenda
Queue

Fig. 1. DECAF agent architecture

5 An evaluation function can be either preset by developers or dynamically selected according
to the rules learned from the changing environments.

40 W. Chen and K.S. Decker

nation points within an input plan; Branch figures out the task branch of the execu-
tion path that contains a selected target coordination point; ApplyMechanism applies a
mechanism to a selected coordination point. Further explanation can be found in [17].

Given: (P, M, R)

Input: P , an uncoordinated plan with uncertainty represented using
EHTN; M , the extended set of GPGP coordination mechanisms; R,
the role of this agent involved in a particular coordination process.
Output: S, a coordinated schedule with uncertainty removed.

1. Apply the function GPGPDetect to P to discover a set of k Coordination
Points, CP = {nlti | i = 1, . . . , k};

2. While (CP �= φ)

– Select a coordination point nlti ∈ CP and CP ← CP − {nlti};
– if (nlti is avoidable)

P ← P − Branch(nlti);
continue;

– else
select mj ∈ M according to Equation 1;
P ← ApplyMechanism(P, {nlti}, mj , r);

3. Generate a better schedule, S, based on a selected utility function;
4. Return S.

An extended set of coordination mechanisms were developed around the common
coordination relationship of “enablement”. Each mechanism has different requirements
in terms of the information needed by each party, the risk involved etc. [2, 3]. We have
catalogued seventeen GPGP coordination mechanisms for enable relationships as listed
in [3]. The seventeen mechanisms are not an exhaustive list; and many are simply vari-
ations on a theme. They include avoidance (with or without some sacrifice), reserva-
tion schemes, simple predecessor-side commitments (to do a task sometime, to do it
by a deadline, to an earliest-start-time (EST), to notify or send result directly when
complete), simple successor-side commitments (to do a task with or without a specific
EST), polling approaches (busy querying, timetabling, or constant headway), shifting
task dependencies by learning or mobile code (promotion or demotion), various third-
party mechanisms, or more complex multi-stage negotiation strategies. These mecha-
nisms exist as optional components within the coordination module of every intelligent
agent6. Thus, each agent can choose one, or a combination of, appropriate mechanisms
for its needs upon certain coordination points in the EMS information systems.

We implemented this extended set of GPGP coordination mechanisms using DE-
CAF (Distributed, Environment-Centred Agent Framework) [19], a toolkit that allows
a well-defined software engineering approach for building real multi-agent systems.
The internal structure of a DECAF agent with newly designed GPGP (Coordination)

6 This set of domain-independent mechanisms are “hard-coded” within every agent; whether
to apply a certain mechanism or not is based on an agent’s own estimation of the current
environment, i.e., selection of a particular mechanism for a particular relationship is dynamic.

The Analysis of Coordination in an Information System Application 41

Module is shown in Figure 1. These internal components work together to keep track of
an agent’s current status: plan selection, scheduling, execution etc. The selected compo-
nents, the planner, the GPGP (coordination) module and the scheduler, are integrated as
an expanded coordination structure. The relationships among these three adjacent com-
ponents are as follows: The planner provides uncoordinated plans (with uncertainty) to
the GPGP (coordination) module; the coordination module takes uncoordinated plans
as input, applies one or a combination of appropriate GPGP coordination mechanisms
to this input and outputs coordinated plans as the input to the scheduler; the scheduler
uses the coordinated plans to produce better schedules. The arrow from the scheduler to
the coordination module indicates that the coordination module takes advantage of the
local scheduler’s scheduling ability to evaluate/estimate the features of remote agents’
actions by asking “What-If” questions. The relationships among these agent compo-
nents further illustrates the aforementioned integrated coordination algorithm.

Further information about all the extended set of GPGP coordination mechanisms
and the actual application of these mechanisms can be found in [2, 3, 17].

3 EMS Model

We do not intend to simulate the exact real world EMS. The objective of this paper is to
demonstrate the effectiveness of our extended set of GPGP coordination mechanisms
in this selected information system, EMS. This EMS model is similar to the real EMS
systems under certain assumptions and selected environmental settings.

In order to suit our model to larger-scale disasters with more participating agencies,
we add a police department into the traditional EMS model. Police carry out the tasks
of clearing traffic jams on the road and controlling police calls, which are both common
during disasters. We remove fire departments from the model to simplify the system,
since fire trucks have similar behaviour patterns as ambulances.7

Based on real world facts [20], an agency assumption holds in the model: police
cars belong to police station, ambulances belong to independent ambulance companies,
and there is no supervision relationship among different response agencies. According
to the assumption, we describe a vehicle behaviour pattern as follows: A police car
starts from its police station, patrols around the local area randomly until an incident
call and continues the patrol after dealing with the incident. An ambulance waits in its
ambulance station for an incident call, finds its way to the incident site, transports the
victims to an appropriate medical facility and returns to the ambulance station for a next
call.

In practice, an EMS response process includes patient flow, equipment flow and
information flow [4]. In this paper, we regard patients and equipment as part of the
information flow resources that help make proper decisions. Figure 2 depicts the infor-

7 Fire departments are capable of putting out fires and other specialized tasks, e.g., removing
victims from severely damaged vehicles, and cannot be replaced by ambulances or other re-
sponse organizations; i.e., there is an important functional distinction among different response
organizations. The removal of fire department from this model is just for simplification pur-
poses.

42 W. Chen and K.S. Decker

Dispatch

HospitalPolice

4
2

Ambulance

3

5

8 9 1 0

6
7

Victim

1
Incident

Fig. 2. An EMS system information flow chart

mation flow of the EMS model. First, incidents are reported to the dispatches. Then, the
incidents are responded to by police departments, ambulance companies and hospitals,
each made up of equipment and personnel trained for this purpose. In the model, a po-
lice car agent represents the role of a police department. Similarly, an ambulance agent
represents an ambulance company. The police department and ambulance company may
have multiple vehicles. There are also hospitals and corresponding dispatches: ambu-
lance dispatch, police dispatch and 911 dispatch. 8

A typical EMS process is described as follows: A 911 call, activated by an incident,
comes in and the 911 dispatch screens the call; the 911 dispatch contacts an appropriate
response agency or multiple agencies based on the type of the incident; the dispatch
of each agency broadcasts the incident to the response vehicles and sends appropriate
vehicles to the incident site; the response vehicle finds its way to the incident site; proper
treatment is provided and the incident is under control; if there is any victim who needs
further medical care, the victim will be transported to a proper medical facility by an
ambulance; if the incident updates to require additional care, other appropriate response
vehicles will be dispatched to the site as well; all the response vehicles then find their
ways back to their base stations or continue to respond to other emergency calls.

4 Framework

We implemented a framework for modeling the EMS system using DECAF [19]. The
framework has also been applied to domains like Internet information gathering in
bioinformatics [3]. This framework supports and is able to produce dynamically chang-
ing environments for selected applications. EMS is a perfect example of high-volume
communication, high-velocity and coordination-intensive information systems, where

8 In the real world, some of the 911 (the emergency telephone number in the USA) dispatches
are the same thing as police and ambulance dispatches; while in most cases, they are not. We
model them as separate roles in this paper.

The Analysis of Coordination in an Information System Application 43

Fig. 3. A snapshot of the EMS framework demonstration program

coordination occurs both vertically within a response organization and horizontally
across organizations routinely.

The EMS framework is simplified to include limited types of agents. A snapshot
of the framework program is shown in Figure 3: two police cars and two ambulances
move around in the local area map in response to incident calls and find their ways back
and forth from their base stations or their current patrol locations to incident sites. The
indexed boxes are corners and intersections; the arrow lines represent directed roads
and streets; a number along with an edge stands for the length of the road and street.
The system map in Figure 3 is the actual local street map of the University of Delaware
and the vicinity with minor modifications.

The coordination points within EMS are the interdependencies (information ex-
changes) among the tasks of all these agents. Different types of agents have different
tasks; the tasks for the same type of agents share the same structures. Because of space
constraints, we only show the task structures of these agents: ambulance, police car, and
hospital in Figure 4. The three tree structures represent the tasks that the response agents
need to do. The top level nodes are root tasks; the leaf nodes represent the action each

44 W. Chen and K.S. Decker

Fig. 4. EMS task structures for Ambulance and Hospital

agent has to execute; the cloud-shape nodes are communication interfaces for receiving
and sending messages. Figure 4 shows only the main tasks and actions in a simplified
version. The root nodes are the agents’ main tasks; the nodes below are executable ac-
tions; the cloud nodes are communication channels among local and non-local agents’
tasks; the task structure depicts the decomposition of the corresponding root tasks into
executable actions. The symbols, Input and OK, are the input and output of a task or
action. The links connecting the input and output represent information flow. The mean-
ings of various types of nodes, the task structural information and task decomposition
are further discussed in [2, 3, 19]

4.1 Participating Agents

There are two kinds of agents in the framework: static agents (e.g., hospitals, ambu-
lance stations, police stations, dispatches) and mobile agents (e.g., police cars and am-
bulances). The static agents are able to communicate with each other, but cannot move
along the roads; the mobile agents are capable of both. Next is a brief description of
each kind of agent.

A hospital receives victims from incidents and manages open beds. An ambulance
station is a base for ambulances and is represented by a coordinate in the map. A police
station is also represented as a coordinate. The coordinate of a base station represents
the start point of a vehicle. There are three kinds of dispatches: police dispatches, am-
bulance dispatches and 911 dispatches; in this model, a 911 dispatch is implemented
as a DECAF agent, which screens incidents and sends notifications to the dispatches
of other response agencies. Upon receiving the notification, the police and ambulance
dispatches inform the incident to their vehicles and send an adequate number of them
to the incident site. The tasks of ambulances and police cars are shown in Figure 4,
conforming to the behaviour pattern explained in the previous section.

4.2 Input Factors

We define an event, or an accident, that causes a 911 emergency call as an incident.
There are various types of incidents requiring different kinds of response organizations.

The Analysis of Coordination in an Information System Application 45

Coordination during the response processes involves all types of participating agents.
An incident is represented as
incident(time, type, severity,location, duration, number, victims[number].(life,
life function)).

Time means the start of an EMS process 9. There are three types of incidents in the
model: Ambulance call, which requires ambulances only; police call, which requires
police only, is modeled as a traffic accident and requires the police to clear the road;
mixed call, e.g., a big traffic accident with injury or ambulance call and also requires
the police to clear the blocked road. Severity indicates whether there is any injury in the
incident and the level of the injury: (severity = 0) means no injury; (severity = 1)
means low severity injury and no ambulance needed; (severity = 2) means high sever-
ity and an ambulance is needed to transport the victim to a hospital. Location means
the spot on the roads and streets in the local area map where the incident happens; it
is represented with coordinate Incident.Location(x, y). Duration indicates how long
an incident lasts, that is, how long the emergency vehicles are kept on the incident site.
Number represents the number of the victims of an incident; if the number is greater
than a single ambulance’s capacity, multiple ambulances may be dispatched. The com-
pound variable, victim, is one of the major resources in the system. Victim[number].life
represents the victim’s initial life value immediately following the incident and this
value drops according to the victim’s life function. Life function indicates how a vic-
tim’s life value drops as time goes on after the incident. If life drops to zero before
entering an appropriate medical facility, it indicates the death of this victim. There are
two kinds of life functions defined: linearly and exponentially decreasing functions due
to the time change, t,: (1) f1 = (1 − t) and (2) f2 = (2 − et).

Incident Generation is complicated. In order to simplify the system without losing
generality, a stand-along incident generator is developed to produce incident instances.
A 911 dispatch receives a new incident from the incident generator and then activates
the response process.

4.3 Output Evaluations

There are three main evaluation factors for EMS: response time for quality control,
survival rate for effectiveness control and coordination efficiency for efficiency control.

The most critical measurement of the performance of an EMS is its response times:

Response Time = Call Evaluation + Caller Interrogation + Unit Dispatch Time

+ Launch Time + Routing Time.

The duration of a response time can be defined in different ways. In our EMS model, the
start of a response time is when an emergency call is received; and the end time is when
any appropriate agency first arrives at the incident site. Survival rate evaluates the ef-
fectiveness of EMS and reflects the overall system performance. However, there may be
multiple coordination points in an entire EMS response and the analysis of our coordi-
nation mechanisms may be not directly related to this factor. Besides the response time,

9 What happens before EMS response is not of our interest. Thus, time means the start of an
EMS response process, not the start of an incident.

46 W. Chen and K.S. Decker

there are other important factors that determine the survival rate: the routing time and
the victim life function etc. Survival rate is affected by various factors, e.g., response
time, availability of the resources, victims’ life functions and traffic patterns at the times
of the incidents, etc. A victim’s life function and the potential traffic condition is out
of the control of EMS. However, these factors still matters, e.g., the police’s clearing
the blocked road provides shorter routing time for ambulances. Coordination efficiency
is another important factor, which reflects the level of the occurrences of coordination
processes within EMS:

Coordination Efficiency =
Coordination Time

Entire EMS Response Time
.

The importance of this measurement lies in that coordination efficiency indicates whether
it improves resource allocation and reduces cost, i.e., whether energy, funding and time
are saved for actual emergency control and not wasted on indirect expenses.

There are other factors for evaluating EMS, e.g., location of a base station, dispatch
accuracy (reflecting how misunderstood, faulty, or missing information impairs correct
dispatch), which will not be discussed here.

5 Experimental Results

5.1 Quantitative Results

The average EMS response time under different sets of environmental factors were
recorded for performance analysis. Due to the paper length constraint, we only show
one set of quantitative results, the average EMS response time, which indicates the
quality of EMS systems, based on the following input parameters: the selection of one
to three police cars, the selection of one to three ambulances, two hospitals, a fixed 0%
communication error rate, constant traffic factors (we assume that an EMS response
process is finished before the change of traffic patterns), randomly generated and poten-
tially concurrent incidents, and four different GPGP mechanisms: Reservation, Demo-
tion, Sending Result, and Polling. The content and the application of these mechanisms
will be introduced in the next subsection. Here, the coordination point, to which we ap-
ply the four mechanisms, is the information exchange process starting from the dispatch
of the selected response vehicles until the first arrival of any one of them. The results
are as shown in Figure 5. From this figure, Reservation and SendingResult mechanisms
share similar performance. Polling uses a little bit more time because of extra commu-
nication handling. Demotion has two thresholds: the location repeat rates10 of 0.2 and
0.4. If (location repeat rate < 0.2) that indicates this spot is safe, the application of
the Demotion mechanism results in more time for the agents to respond to the EMS
requests; if (0.2 ≤ location repeat rate ≤ 0.4), Demotion’s performance is similar to
other mechanisms; if (location repeat rate > 0.4) that implies this spot is problematic,
Demotion outperforms others, where routine patrolling is needed. Notably, the decreas-
ing trend of the average EMS response time for Demotion in Figure 5 is not as steep

10 Defined as the rate of incident happening at previous locations.

The Analysis of Coordination in an Information System Application 47

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Location Repeat Rate

Reservation
Demotion

SendingResult
Polling

Fig. 5. Performance of coordination mechanisms on changing locations

as the the decrease of the task execution time in Figure 4 in [3]. The reason lies in the
different behaviours of police cars and ambulances: ambulances have the advantage of
starting from their own stations (locations) using the previous cached route if the emer-
gency location is repeated, while police cars need to re-calculate the route because of
their random patrolling tasks. More quantitative results are in [2].

5.2 Analytic Results—Mechanisms and Domain Task Situations

This section discusses in what situations a certain coordination mechanism is better
than the others, or a certain set of mechanisms more effective than the rest of them.
Analytic results provide general guidance to dynamic environments. Our final objec-
tive is to discover the relationships between these GPGP coordination mechanisms and
the different settings of environmental factors, which is exactly what the coordination
strategy problem addresses in [3, 17]. If this problem is solved, every agent is capa-
ble of selecting the best coordination behaviours using different GPGP coordination
mechanisms within the changing environments. As a result, the optimal solution for the
entire system can be achieved by distributing coordination intelligence to every agent;
scaling-up is easy when the agents make decisions independently [21].

In order to answer a broader range of questions and be ready for new environmen-
tal instances, we must make general statements and detect some patterns from these
experimental results. We normalize data in a proper format and feed the data to the
C5.0 decision tree learning algorithm[22]. Based on the resulting decision tree, C5.0
forms rules representing different paths in the tree from the root to a leaf node for
the classification of success (higher than a threshold) or failure (lower than a thresh-
old). Thus, each rule explains a classification for future test cases. In this approach,
we map the dense (or continuous) attribute values into a set of discrete categories. For
example, the traffic factor associated with each edge can be normalized into the set
of {Low, Medium, High}, instead of the continuos range of [0, 1]. The performance
evaluation is whether the response time is good (or short) enough. The inputs to the
decision-tree algorithm are the normalized values of the changing environmental fac-
tors described above: GPGP coordination mechanisms, the number of the various types

48 W. Chen and K.S. Decker

of agents (police car, ambulance and hospital), the occurrences of the emergencies and
communication error rate etc.

The general analytic results of the environmental factors are listed below: (1)A
larger number of agents result in better EMS response time; however, the performance
increase is based on the distances from the nearest agent to the emergency locations;
the increase of the agent number only improves the probability that one of the agents
might be near the emergency location when receiving a dispatch. This rule suggests
large number of response vehicles possible on the road; however, the proper number
needs to be calculated bounded by certain constraints, e.g., cost of vehicles, road ca-
pacity. (2) When the communication error rate increases, the application of the polling
mechanism improves performance and provides far better robustness. (3) The increase
of the location repeat rate results in better performance for the Demotion mechanism.

We also identified agent-architectural properties that assist coordination: a local
scheduler reasoning about non-local commitments and a way to generate such com-
mitments by “what-if” questions. Indeed, viewing the eventual end-product of coordi-
nation mechanisms as information for better schedules gives a consistent and general
way of combining different coordination mechanisms. The most difficult aspect of the
implementation of an information system is to develop a proper agent architecture so
that well-represented, pre-planned activities can be analyzed and possibly altered before
they are executed.

Next, we briefly explain the performance of the four selected mechanisms tested in
the EMS system.

For Avoidance and Sacrifice Avoidance mechanisms, there is a situation that a victim
only has a trivial injury. Therefore, there is no need to send any ambulance. The task of
basic medical treatment carried out by the police can be regarded as a local alternative
and it is different from the non-local task that needs coordination, which is the police
calling an ambulance for this treatment. We can design the task structure of a mobile
agent with not only the task of its specialty, e.g., the police clearing the traffic, but also
the alternative task of calling an ambulance. Under this task design, we conclude that:
when police training cost is low, this mechanism is good; when ambulance operation
cost is high, this mechanism is economical; when all ambulances are busy, e.g., during
disasters, this mechanism is especially excellent.

For Coordination by Reservation, the coordination point is the communication be-
tween ambulances and hospitals. Reservation of a hospital is the process to apply Coor-
dination by Reservation. An ambulance either reserves an open bed in a hospital after
an initial exam of the victim or simply transports the victim to a nearest hospital without
reservation, which potentially does not have any open bed at the time of their arrival11.
We conclude that coordination by reservation is generally better than without coor-
dination; this mechanism is bad only if a reservation process costs too much time or
there is an impaired communication channel. Compared with the transportation time,
the reservation time in EMS is negligible.

11 In large-scale emergencies, ambulances in neighbouring cities could be used and the number
of open beds in hospitals could be decreased, which is exactly the situations that reservation is
vital.

The Analysis of Coordination in an Information System Application 49

For Demotion, we state that it is efficient for saving most lives possible and it fits
the fact that demotion has already been applied in the real world. For example, po-
licemen have already been trained with CPR (cardiopulmonary resuscitation) and basic
first aid, which is what autonomous agents choose to do based on the experiments for
saving more lives. Although extra training and cost are needed, it is still a matter of
life and death if policemen can do it to save a victim/patient in emergency, instead of
doing nothing and simply waiting for the arrival of an ambulance. It looks similar to the
situation for Avoidable Mechanisms, but they are different in that (1) it is from an ambu-
lance’s view, instead of from a policeman, and (2) before training, policemen could not
do CPR; thus the first aid is not an alternative task to choose. Most importantly, there
are tasks that can be actually “demoted” to the police. In the real world, paramedics
will be in an ambulance and accompany patients in the ambulance all the way to the
hospital. Paramedics are capable of high-level emergency care12. If we demote the rel-
ative high-level emergency care to the police, Demotion Shift needs to be applied. Here
we have to point out that in reality CPR and the similar first aid skills have been widely
distributed to almost all emergency responders already and this fact proves our research
result. We conclude that the demotion of the medical treatments by a non-ambulance
agent is effective; the effectiveness also depends on the frequency of the need for the
medical treatments during incidents; in our EMS model, it changes the life function
from a non-linear into a linear decrease.

For Polling, it can be applied to all kinds of dependencies. The reasons of using
polling in the real world are the vagueness of cellular phone signal, temporary unavail-
ability of hospital personnel, communication overfill during disasters etc. We conclude
that: Polling is robust in dynamic environment with unpredictable communication qual-
ity, but a waste of communication resource in all other cases because of the extra com-
munication load.

6 Conclusion and Future Work

We have introduced an extended set of GPGP coordination mechanisms, which are for-
mally represented by our highly expressive EHTN. A coordination strategy problem and
an integrated coordination problem are presented, together with an integrated coordina-
tion algorithm. We also briefly introduced a high-volume communication, high velocity
and coordination-intensive information system—EMS, projected an EMS model and
implemented a framework using DECAF. Experimental results, including quantitative
and qualitative results, have been presented and briefly analyzed. The framework is flex-
ible and extensible to new technologies, such as wireless communication, telemedicine
etc. Our extended GPGP coordination mechanisms are demonstrated as significantly
helpful in coordination- and communication-intensive environments like EMS. Certain
rules have been projected, e.g., CPR should be demoted to the responders, whoever
first reaches the incident site, usually the police, which reflects the actual real-world
situation of today.

12 There are different levels of medical treatment. Current medical training for police is the low-
est.

50 W. Chen and K.S. Decker

The EMS framework is flexible and extensible. We have concentrated on the rela-
tively small incidents in this paper; these incidents are basic elements of what happens
during much larger emergencies or disasters. The increasing complexity during a dis-
aster other than an incident lies in the following facts: a disaster requires much more
emergency responders and more types of response agencies; communication channels
may be damaged, overly used or even totally unavailable; the hierarchy of resource
management for a disaster contains more layers than for an incident, e.g., at the high-
est level a command centre is created for coordinating the entire response operation.
A viable way to extend our existing system to deal with the increased complexity of
handling disasters is through a model extension. For example, we modify the model
by increasing the types and the capacity of the current incident parameters to include
special disaster features, e.g., more victims, more quantity and types of responders; the
complex disaster response management hierarchy could introduce extra layers of dis-
patches and special coordinators. Additional constraints are easy to be incorporated as
well, e.g., road capacity, the availability of response organizations in nearby cities etc.
The key idea of the extensibility of our framework is that a disaster consists of a series
of incidents that happen in a condensed manner and each incident needs to be handled
in the same fashion in micro-situations. Different kinds of agents are easily added into
the EMS Coordination system. For example, in many areas, helicopters are available
for the transportation of emergency victims. This kind of extra transportation vehicles
can be represented with an extra route from the emergency site to a trauma centre; and
this route is associated with a very small value meaning that the transportation by a
helicopter is faster, with less traffic concern, but higher cost. For another example, the
incident types can be extended as well: a fire incident will cause the immediate response
from fire trucks and firefighters, which are new types of agents in the system.

Based on the flexibility and extensibility of this framework, our future work is: (1)
introducing more heterogeneity into the EMS model, e.g., new types of response agen-
cies (firefighters and physicians) for EMS and non-DECAF agents (an applet in a web
browser for real time, public EMS queries) for the framework; (2) developing separate
user/programmer interfaces—the user control of the coordination configuration and the
application of this framework into different local settings. From a system’s point of
view, this project will lead to a user-centred approach: a user, or an EMS system in-
spector, or a response organization manager, inputs his targets (maximizing survival
rate, minimizing cost, or the combination of them, etc.) to the EMS model; the co-
ordination component associated with every responder automatically selects the best
coordination mechanism(s) to apply to certain coordination points in its task structure;
thus, finally the EMS system is adapted to the user’s request.

As the technologies are advancing every day, the communication channel becomes
much more capacious, clear and reliable. For example, a new GRYW (Grayling Wire-
less) communication system has been designed for high profile markets, e.g., small
scale firefighting teams. For this small scale team coordination, communication is not a
barrier any more; each firefighter’s individual ability becomes the bottleneck of the sys-
tem. We can easily extend our flexible framework to incorporate this new technology
by applying Demotion Shift mechanism for the agents’ individual tasks; and Polling
becomes unnecessary, which implies that each firefighter should receive higher-level
medical training in order to save more lives.

The Analysis of Coordination in an Information System Application 51

References

1. Decker, K., Li, J.: Coordinating mutually exclusive resources using GPGP. Autonomous
Agents and Multi-Agent Systems 3 (2000) 133–157

2. Chen, W.: Designing an Extended Set of Coordination Mechanisms for Multiagent Systems.
PhD thesis, Computer and Information Sciences, University of Delaware (2005)

3. Chen, W., Decker, K.: Applying coordination mechanisms for dependency relationships
under various environments. In: Proceedings of Workshop in AAMAS02: MAS Problem
Spaces and Their Implications, Bologna, Italy (2002)

4. Sachs, G.M.: Officer’s Guide to Fire Service EMS. Fire Engineering (1999)
5. Clark, T., Waring, C.: A simulation approach to analysis of emergency services and trauma

center management. In: the 1987 Winter Simulation Conference. (1987)
6. Iskander, W.H.: Simulation modeling for emergency medical service systems. In: Proceed-

ings of the 1989 Winter Simulation Conference. (1989)
7. Parker, W., Johnson, R.: Simulation of a coordinated accident rescue system. In: the fourth

annual conference on Applications of simulation. (1970)
8. Christie, M., Levary, R.: The use of simulation in planning the transportation of patients to

hospitals following a disaster. Journal of Medical Systems 22 (1998) 289–300
9. Wears, R., Winton, C.: Simulation modeling of prehospital trauma care. In: the 1993 Winter

Simulation Conference. (1993)
10. Giiler, N., Ubeyli, E.: Theory and applications of telemedicine. Journal of Medical Systems

26 (2002) 199–220
11. Nagatuma, H.: Developing of an emergency medical video multiplexing transport system.

Journal of Medical Systems 27 (2003) 133–140
12. Carley, K., Gasser, L.: Computational organization theory. In: Multiagent Systems: A Mod-

ern Approach to Distributed Artificial Intelligence. MIT Press (1999)
13. Malone, T., Crowston, K.: The interdisciplinary study of coordination. In: ACM Computing

Surveys. (1994) 87–119
14. Garvey, A., Humphrey, M., Lesser, V.: Task interdependencies in design-to-time real-time

scheduling. In: AAAI93. (1993) 580–585
15. Decker, K.S.: TÆMS: A framework for environment centered analysis and design of coordi-

nation mechanisms. In O’Hare, G., Jennings, N., eds.: Foundations of Distributed Artificial
Intelligence. Wiley Inter-Science (1996)

16. Udupi, Y., Yolum, P., Singh, M.: Trustworthy service caching: Cooperative search in p2p
information systems. In: aois2003. (2003)

17. Chen, W., Decker, K.: Managing multi-agent coordination, planning, and scheduling. In:
Proceedings of the Third Autonomous Agent and Multi-Agent Systems, New York, USA
(2004)

18. Erol, K., Hendler, J., Nau, D.: HTN planning: Complexity and expressivity. In: AAAI94.
(1994) 1123–1128

19. Graham, J., Decker, K., Mersic, M.: DECAF a flexible multi-agent system architecture.
Autonomous Agents and Multi-Agent Systems 7 (2003) 7–27

20. Bureau of Labor Statistics: Occupational outlook handbook, 2002-2003 edition (2003)
http://www.bls.gov/oco/.

21. Durfee, E.: Scaling up agent coordination strategies. IEEE Computer 34 (2001) 39–46
22. Quinlan, R.: Improved use of continuous attributes in c4.5. Journal of Artificial Intelligent

Research 4 (1996) 77–90

Market-Based Recommender Systems:
Learning Users’ Interests by Quality Classification�

Yan Zheng Wei, Luc Moreau, and Nicholas R. Jennings

Intelligence, Agents, Multimedia Group,
School of Electronics and Computer Science,

University of Southampton, UK SO17 1BJ
{yzw01r, L.Moreau, nrj}@ecs.soton.ac.uk

Abstract. Recommender systems are widely used to cope with the problem of
information overload and, consequently, many recommendation methods have
been developed. However, no one technique is best for all users in all situations.
To combat this, we have previously developed a market-based recommender sys-
tem that allows multiple agents (each representing a different recommendation
method or system) to compete with one another to present their best recommen-
dations to the user. In our system, the marketplace encourages good recommen-
dations by rewarding the corresponding agents according to the users’ ratings of
their suggestions. Moreover, we have shown this incentivises the agents to bid
in a manner that ensures only the best recommendations are presented. To do
this effectively, however, each agent needs to classify its recommendations into
different internal quality levels, learn the users’ interests and adapt its bidding be-
haviour for the various internal quality levels accordingly. To this end, in this pa-
per, we develop a reinforcement learning and Boltzmann exploration strategy that
the recommending agents can exploit for these tasks. We then demonstrate that
this strategy helps the agents to effectively obtain information about the users’ in-
terests which, in turn, speeds up the market convergence and enables the system
to rapidly highlight the best recommendations.

1 Introduction

Recommender systems have been widely advocated as a way of coping with the prob-
lem of information overload. Such systems help make choices among recommendations
from all kinds of sources for users who do not have sufficient personal experience of
all these alternatives [1]. Many recommender systems have been developed but they
are primarily based on two main kinds of filtering techniques: (i) content-based filter-
ing recommends items based on their objective features (such as the text content of a
Web document), whereas (ii) collaborative filtering recommends items based on their
subjective features (e.g., the fact that a user with similar tastes likes them). However,
both kinds of techniques have their weaknesses. The former cannot easily recommend
non-machine parsable items (such as audio and video items), whereas the latter fail

� This research is funded in part by QinetiQ and the EPSRC Magnitude project (reference
GR/N35816).

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 52–67, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Market-Based Recommender Systems 53

when there are an insufficient number of peers to accurately predict a user’s interests.
Given this, it has been argued that there is no universally best method for all users in all
situations [2].

In previous work, we have shown that an information marketplace can function ef-
fectively as an overarching coordinator for a multi-agent recommender system [3, 4]. In
our system, the various recommendation methods, represented as recommender agents,
compete to advertise their recommendations to the user. Through this competition, only
the best recommendations (from whatever source) are presented to the user. Essentially,
our system uses a particular type of auction (generalized first price sealed bid) and a
corresponding reward regime to incentivise the agents to align their bids with the user’s
preferences. Thus, recommendations that the user considers good are encouraged by
receiving a reward, whereas poor ones are deterred (by paying to advertise their rec-
ommendations but by receiving no reward). In short, the market acts as a feedback
mechanism that helps agents to correlate their own internal ratings of recommenda-
tions (i.e. the relevance rating computed by whatever recommendation algorithm they
use) to the desires of the user.

While our system works effectively most of the time, an open problem from the
point of view of the individual recommender agents remains: given a set of recom-
mendations with different internal rating levels, in what order should an agent try to
advertise them so that it can learn the user’s interests as quickly as possible, while still
maximizing its revenue? Thus, for example, the agent could bid the items that have never
been advertised to the user, which would allow it to learn the user’s interests quickly
but would also result in it losing money. Conversely, the agent could always bid those
that have been highly rewarded, so ensuring a good return, but it would take a very long
time to learn the extent of the user’s interests. While this problem is couched in the
context of our specific system, this is a general problem that all recommender systems
face. Thus, even though they may not have a currency or an explicit reward, they still
need to determine the user’s preferences as quickly as possible, while still making good
suggestions, in order to make effective recommendations.

To overcome this problem, we have developed a quality classification mechanism
and a reinforcement learning strategy for the agents to learn the user’s interests. Intu-
itively, to make good suggestions, an agent needs to classify its recommendations into
different categories based on some specific features of the recommendations and then
suggest the right categories of items to the user according to his interests. In our con-
text, each agent classifies its recommendations into different quality levels (e.g. very
good, good, bad etc) based on its internal belief about their relevance to the user’s con-
text. Then, to assist an agent to direct the right categories of recommendations to the
user, we developed a concomitant reinforcement learning strategy. This strategy enables
an agent to relate the user’s feedback about its recommendations to its internal quality
measure and then to put forward those recommendations that are consistent with this.
This is important because the more effectively an agent relates its recommendations to
the user’s interests, the better it serves the user and the more rewards it receives.

Against this background, this paper advances the state of the art in the following
ways. Firstly, a novel reinforcement learning strategy is developed to enable the agents
to effectively and quickly learn the user’s interests while still making good recommen-

54 Y.Z. Wei, L. Moreau, and N.R. Jennings

dations. Secondly, and perhaps more importantly, we demonstrate how our learning
strategy, coordinated through the marketplace, can be viewed as a quality classification
problem and how the marketplace assists the classification and aligns the right recom-
mendations to the right people. Third, from an individual agent’s point of view, we
show the learning strategy enables an agent to maximize its revenue. Finally, we show
that when all agents adopt our strategy, the market rapidly converges and makes good
recommendations quickly and frequently.

The remainder of this paper is structured in the following manner. Section 2 briefly
recaps the basics of our multi-agent recommender system and highlights the problem
an individual agent faces in it. Section 3 details the design of our learning strategy.
Section 4 empirically evaluates this design. Section 5 outlines related work in terms of
reinforcement learning and market-based recommendations. Section 6 concludes and
points to future work.

2 The Quality Classification Problem for Market-Based
Recommendations

Different recommendation methods use different metrics and different algorithms to
evaluate the items they may recommend. Thus, the internal rating of the quality of a
recommendation can vary dramatically from one method to another (e.g. some may
think it is very relevant for the user, others may think it moderately relevant, while yet
others may believe it is irrelevant). Here, we term this internal evaluation the method’s
internal quality (INQ). However, a high INQ recommendation from one method does not
necessarily mean the recommendation is any more likely to better satisfy a user than a
low INQ item suggested by another. Ultimately, whether a recommendation satisfies a
user can only be decided by that user. Therefore, we term the user’s evaluation of a
recommendation the user’s perceived quality (UPQ).

With these concepts in place, we now briefly outline our market-based recommender
in the order of the market processes (see the circled numbers in Figure 1) as follows.
Firstly, when the market calls the agents for a number (S) of recommendations, each
agent submits S items and bids a price for each of them. Secondly, the market ranks all
recommendations in decreasing order of their prices and displays the S items with the
highest bid prices to the user. Consequently, each agent with displayed items pays an
amount of credits (equal to how much it bids) for each of the corresponding displayed
items for the advertisement. Thirdly, the user then visits a number of the displayed items
and gives a rating (i.e. UPQ) to each visited item based on his satisfaction. Fourthly, the
market rewards the agents with positive UPQ recommendations an amount of credit that
is proportional to their UPQ values (see [3] for the details and the proof that this mech-
anism is Pareto optimal with respect to the group of rewarded agents and maximizes
their social welfare). Thus, the system completes one round of operation and proceeds
with another following the above four steps.

In this context, the role of the reward mechanism is to provide the agents with in-
centives to align their bidding behaviour with the interests of the user. From the point of
view of an individual agent, however, it needs to learn which recommendations the user
prefers. To do this, agents classify their recommendations into a predetermined number

Market-Based Recommender Systems 55

2

3

4

the selected item’s
reward proportionally to

UPQ

A User

pay as bid
if shortlisted

source recommendations

The circled numbers represent the order of the market process.

INQ

1

Which segment should I
choose to recommend ?

INQ
segment 1

INQ

other agents’
Recommendations

segment 3

INQ
segment 2

The Marketplace

select M items
with highest price

Other Recommender
Agents

its quality a value of .
recommendation and I rate

UPQ

I am satisfied with agent A’s

Recommendation A

 shortlisted
Recommendations

segment ...
INQ

segment G

Recommender
Agent A

Fig. 1. An Agent’s Learning Problem

(G) of categories (or segments) based on their INQs (e.g. in the simplest case, where
G = 2, an agent could classify bad recommendations as those with an INQ of less than
0.5 and those with an INQ between 0.5 and 1.0 as good) and then they relate these INQs
to the UPQs. Intuitively, the more the user is satisfied with a recommendation, the more
reward the corresponding agent receives. Thus, an agent that has sufficient experience
of the user’s feedback can learn the user’s interests by correlating its recommendations
(and their corresponding INQ segments) to the rewards (that reflect their UPQs) they
receive [4]. This, in turn, enables a self-interested agent to consciously make recom-
mendations from those INQ segments that correspond to high UPQs so that it can best
satisfy the user and, thus, gain maximal revenue. To effectively compute the agents’
revenue, we define an agent’s immediate reward (made from a recommendation dis-
played to the user in one auction round) as the reward it received minus the price it
has paid for the advertisement1. With this, what an agent needs to do is to learn how
much immediate rewards, on average, it can expect for items in each category (i.e. each
INQ segment). We term this average immediate reward for each INQ segment an agent’s
expected revenue. Thus, a self-interested agent can maximize its revenue by frequently
bidding recommendations from the segments with high expected revenue. Therefore, an
agent’s recommending task can be seen as a quality classification problem and it needs
to align the user’s preferences with its INQ segments (reflected by expected revenue)
and meanwhile make maximal revenue.

However, when an agent starts bidding in the marketplace, it has no information
about how much revenue it can expect for each segment. Therefore, the agent needs to

1 Agents pay nothing for items they put forward that are not displayed to the user (this occurs
when other agents are willing to pay more to advertise their recommendations). By definition,
an immediate reward may be either positive or negative. If a displayed recommendation is not
selected by the user or if it has paid too much to display an item, the corresponding agent’s
immediate reward is negative since it has paid for the display and received less reward.

56 Y.Z. Wei, L. Moreau, and N.R. Jennings

interact in the marketplace by taking actions over its G segments to learn this informa-
tion (as per Figure 1). In this way, an agent can produce a profile of such information
from which it can form an optimal strategy to maximize its overall revenue. In this
context, the agent’s learning behaviour is on a “trial-and-error” basis. The agent bids
its recommendations and receives the corresponding feedback in a manner that good
recommendations gain rewards, whereas bad ones attract a loss. This kind of trial-and-
error learning behaviour is exactly what happens in Reinforcement Learning [5]. Thus,
to be more concrete, an agent needs an algorithm to learn the expected revenue over
each segment. In addition, it also needs an exploration strategy to make trials on its G
segments such that it strikes a balance between learning as quickly as possible, while
still maximizing revenue.

3 The Learning Strategy

This section details the design of an agent’s learning algorithm and exploration strat-
egy in sections 3.1 and 3.2 respectively. The overall strategy is then pulled together in
section 3.3.

3.1 The Q-Learning Algorithm

In previous work, we have proved (theoretically and empirically) that our marketplace
enables an agent to relate the rewards it received to its G INQ segments [4]. Building
on this basis, the contribution of this paper is in how to learn the expected revenue
that is likely to accrue over its G segments. Such a strategy is desirable because high
expected revenue on a specific segment implies that more rewards can be expected if
it repeats bidding on that segment in future. Therefore, this subsection aims to address
the problem of producing the expected revenue profile over an agent’s G segments.

In detail, an agent needs to execute a set of actions (bidding on its G segments),
(a1, a2, · · · , aG), to learn the expected revenue of each segment (R(ai), i ∈ [1..G]).
Specifically, an action ai that results in its recommendation being displayed to the user
must pay some amount of credit. Then, it may or may not receive an amount of re-
ward (depending on whether its recommendation satisfies the user). We record the tth

immediate reward that ai has received as ri,t (t = 1, 2, · · ·). From a statistical perspec-
tive, the expected revenue can be obtained from the mean value of the series of discrete
immediate reward values:

E[R(ai)] = lim
t→∞(

1
t

∑

t

ri,t) . (1)

In this context, the Q-learning technique provides a well established way of estimat-
ing the optimality [5]. In particular, we use a standard Q-learning algorithm to estimate
R(ai) by learning the mean value of the immediate rewards:

Q̂i := (1 − 1
t
) · Q̂i +

1
t
· ri,t , (2)

where Q̂i is the current estimate R(ai), and 1
t is the learning rate that controls how

much weight is given to the immediate reward (as opposed to the old estimation). As 1
t

Market-Based Recommender Systems 57

decreases, Q̂i builds up an average of all experiences, and the odd new unusual experi-
ence, ri,t, does not significantly affect the established Q̂i. As t approaches infinity, the
learning rate tends to zero which means that no learning is taking place. This, in turn,
makes Q̂i converge to a unique set of values that define the expected revenue of each
segment.

PROPOSITION: As t −→ ∞, Q̂i converges to E[R(ai)].
PROOF: We use Qi,0 to represent the initial value of Q̂i, and Q̂i,t to represent the
local estimation to R(ai) when ai has been experienced t times. Q̂i’s updates go:

Q̂i,1 = 0 · Q̂i,0 + 1 · ri,1 = ri,1

Q̂i,2 = 1
2 · ri,1 + 1

2 · ri,2 = 1
2 (ri,1 + ri,2)

Q̂i,3 = 2
3 · 1

2 (ri,1 + ri,2) + 1
3 · ri,3 = 1

3 (ri,1 + ri,2 + ri,3)
...

Q̂i,t = 1
t (ri,1 + ri,2 + · · · + ri,t) = 1

t

∑t
j=1 ri,j

As t → ∞, limt→∞(1
t

∑t
j=1 ri,j) statistically defines E[R(ai)]. �

This proof exemplifies how newly experienced immediate rewards, combined with
the learning rate, produce convergence. With the Q-learning algorithm in place, an agent
needs an exploration strategy to execute actions to build up its Q̂ profile.

3.2 The Exploration Strategy

We assume all agents are self-interested and want to gain maximal revenue as they
bid. However, before Q̂i converges, it is difficult for an agent to know how much can
be expected through each action and, therefore, which action it should choose. It is
faced with the classic dilemma of choosing actions that have a well known reward or
choosing new ones that have uncertain rewards (which may be higher or lower than the
well known actions). To this end, the agent needs an exploration strategy over its G
segments to build up its Q̂i in an effective way so that it can know how much return can
be expected from each segment.

In general, there is a fairly well developed formal theory for exploration strategies
for problems similar to that faced by our agents [6]. However, the standard methods
require very specific conditions (detailed in section 5) that do not hold in our context2.
Specifically, the number of times that an agent can interact with the marketplace is not
limited. Thus, the agent can gather as much information as it wants in order to form its
expected revenue profile. Knowing how much can be expected through each action, an
agent can use a probabilistic approach to select actions based on the law of effect [7]:
choices that have led to good outcomes in the past are more likely to be repeated in
the future. To this end, a Boltzmann exploration strategy fits our context well; it ensures

2 In fact, it is hard to find the absolutely best strategy for most complex problems. In reinforce-
ment learning practice, therefore, approaches tend to be developed for specific contexts. They
solve the problems in question in a reasonable and computationally tractable manner, although
they are often not the absolutely optimal choice [6].

58 Y.Z. Wei, L. Moreau, and N.R. Jennings

the agent exploits higher Q̂ value actions with higher probability, whereas it explores
lower Q̂ value actions with lower probability [6]. The probability of taking action ai is
formally defined as:

Pai
=

eQ̂i/T

∑G
j=1 eQ̂j/T

(T > 0). (3)

where T is a system variable that controls the priority of action selection. In practice,
as the agent’s experience increases and all Q̂is tend to converge, the agent’s knowledge
approaches optimality. Thus, T can be decreased such that the agent chooses fewer
actions with small Q̂i values (meaning trying not to lose credits) and chooses more
actions with large Q̂i values (meaning trying to gain credits).

In general, however, we have observed that the learning algorithm of equation (2)
accompanied with the exploration strategy of equation (3) has a problem of producing
bias from the optimal and very little work has been done to address this. This problem
occurs when an agent obtains a very small negative Q̂i value for a particular action in
its first few trials3. If this happens, a bias from the true expected revenue of this action
may occur (since the action may in general produce positive R(ai)) and the agent will
seldom choose it. This kind of bias is a particular problem in our system, because a user
may not always visit all displayed items and, thus, some good recommendations may
be skipped and, therefore, be deemed as bad ones. To avoid such bias, T needs to be
assigned a very large value in the beginning of learning to limit the exploration priority
given to those actions with very large Q̂ values. However, controlling T in terms of
producing the unbiased optimal strategy is hard to achieve, since different actions’ Q̂s
converge with different speeds and their convergence is difficult to detect. Even with
other exploration strategies, such biases still exist since no exploration can avoid such
unlucky trials at the beginning of learning. To this end, we developed an algorithm that
takes positive initial Q̂i values into account to overcome this problem. We detail this in
the next section.

3.3 The Overall Strategy

To overcome the impact of bias in the beginning of learning, we use positive initial Q̂
values (i.e. Q̂i,0) and make them affect the learning. Thus, instead of algorithm (2), we
use the following learning algorithm:

Q̂i := (1 − 1
t0 + t

) · Q̂i +
1

t0 + t
· ri,t . (4)

The difference between (2) and (4) is that the former does not take Q̂i,0 into account,
whereas the latter does. Specifically, algorithm (4) assumes that each action has been
experienced t0 (t0 is positive and finite) times and each time with a feedback of Q̂i,0

(Q̂i,0 � 0) before the agent starts learning. This, in turn, removes the problem dis-
cussed in section 3.2. Indeed, if an action causes a negative immediate reward in the

3 A negative immediate reward means punishment and an erroneous action. A reward of zero
means that the action has received no feedback. Thus, actions with negative, zero and positive
feedback are differentiated and exploration priority should be given to the latter two.

Market-Based Recommender Systems 59

beginning, it does not force its Q̂i to become negative. In this way, all actions will still
be allocated a relatively equal opportunity of being explored as an agent begins learn-
ing. As the agent continues to interact with the marketplace, its Q̂is update gradually
to different levels and these levels still make its exploration follow the law of effect.
Thus, the agent’s exploitation tends to optimality with its Q̂ values tending to converge.
Additionally, by initializing Q̂ with positive values, the exploration does not need a so-
phisticated control on T , since a relatively small positive value is sufficient and is easier
to control. Moreover, the change from (2) to (4) does not affect the convergence.

PROPOSITION: Given Q̂i’s definition by algorithm (4), its convergence to E[R(ai)]
is independent of its initial value Q̂i,0 and initial time t0 .
PROOF: Q̂i’s updates go:

Q̂i,1= t0
t0+1 · Q̂i,0 + 1

t0+1 · ri,1

Q̂i,2= (1 − 1
t0+2)(t0

t0+1 · Q̂i,0 + 1
t0+1 · ri,1) + 1

t0+2 · ri,2

= t0
t0+2 · Q̂i,0 + 1

t0+2 · (ri,1 + ri,2)
Q̂i,3= (1 − 1

t0+3)(t0
t0+2 · Q̂i,0 + 1

t0+2 · (ri,1 + ri,2)) + 1
t0+3 · ri,3

= t0
t0+3 · Q̂i,0 + 1

t0+3 · (ri,1 + ri,2 + ri,3)
...

Q̂i,t = t0
t0+t · Q̂i,0 + t

t0+t · 1
t · ∑t

j=1 ri,j

Since t0 is finite, limt→∞ t0
t0+t −→ 0 and limt→∞ t

t0+t −→ 1.
Thus, limt→∞ Q̂i,t −→ limt→∞(1

t

∑t
j=1 ri,j) = E[R(ai)]. �

This proof shows that algorithm (4) also produces unbiased learning. Thus, we will
use (4) and (3) for our agents and the overall strategy is detailed in Figure 2.

4 Evaluation

This section reports on the experiments to evaluate the learning strategy we have de-
veloped. The experimental settings are discussed in section 4.2, before the evaluations
are presented in section 4.3. First, however, we discuss the criteria with which we can
evaluate our design.

4.1 Evaluation Metrics

To evaluate the learning strategy we use the following evaluation metrics (the first two
are concerned with an individual learner’s performance and the second two are con-
cerned with the performance of the collective of learners):

Convergence to Optimality: Many learning algorithms come with a provable guaran-
tee of asymptotic convergence to optimal behaviour [5]. This criterion is included here
to evaluate the quality of learning itself; it is important because if an algorithm does not
converge, the agent will have no incentive to follow its behaviour.

Individual Rationality: All component recommenders in our system are self-interested
agents that aim to maximise their revenue by bidding their recommendations [3]. Thus,

60 Y.Z. Wei, L. Moreau, and N.R. Jennings

THE MAIN STRATEGY:
for i = 1 to G do {

Q̂i,0 = Qinit; // Initialize Q̂i and Qinit � 0
ti = 0; // Initialize ti

}
do {

for i = 1 to G do
Pai

= ExploreProbability(i, Q̂1, Q̂2,· · · , Q̂G); // Equation (3)
ak = ActionSelection(Pa1 , Pa2 , · · · , PaG

) �; // k ∈ [1..G]
tk = tk + 1; // ak has been experienced tk times
rk,tk

= ImmediateReward(ak); // compute immediate reward
Q̂k = UpdateQ(Q̂k , tk , rk,tk

); // Equation (4)
} while (true)

� METHOD ACTIONSELECTION:
ActionSelection(Pa1 , Pa2 , · · · , PaG

){
double boundary[0..G]; // probability boundary for G segments
for i = 0 to G do

boundary[i] = 0;
for i = 1 to G do // compute the G actions’ probability boundary

for j = 1 to i do
boundary[i] = boundary[i] + Paj

;

double Rand = UniformRandom0to1() ♠; // generate a probability
for k = 1 to G do

if (boundary[k − 1] � Rand < boundary[k])
return ak; // select a random action based on its probability

}
♠ UniformRandom0to1() returns a random value that follows a uniform distribution within the range [0, 1.0).

Fig. 2. The Learning Strategy

if an agent can make a profit by participate in a particular encounter it will do so. Thus,
such individually rational mechanisms are important because, without them, there is no
motivation for the agents to participate in the system.

Quick Market Convergence: If the prices of the displayed recommendations reach
a steady state after a number of consecutive auctions, the market is convergent. In the
analysis of our recommender system, we proved that convergence is necessary to ensure
only the best items are displayed and that they are shortlisted in decreasing order of
UPQ [4]. Therefore, a market that converges quickly means that it starts satisfying the
user quickly. This is clearly important since a user will stop using a recommender if it
takes too long to produce good suggestions.

Best Recommendation’s Identification: A good recommender system should be able
to identify the best recommendation (the one with the highest UPQ) quickly and sug-
gest it frequently [8]. This is important because, otherwise, if the best recommendation
cannot be identified and displayed, the user will stop using the system.

4.2 Experimental Settings

Having previously shown that our marketplace is capable of effectively incentivising
good recommendation methods to relate their INQs to the UPQ [4], we will not discuss
how the agents do this. Rather, here, we simply assume that there are four good recom-
mendation methods (able to correlate their INQs to the UPQ) and four poor ones (unable

Market-Based Recommender Systems 61

to do so). Given a specific recommendation (Rec), the correlations of its UPQ to a good
method’s INQ (INQg) and to a poor one’s (INQp) are described in equations (5) and
(6) respectively (“�” means “has no relation to”):

UPQ(Rec) = INQg(Rec) ± 0.1 · random() (5)

UPQ(Rec) � INQp(Rec) (6)

where random() returns a random value that follows a uniform distribution within the
range [0, 1.0). This random value can be seen as the noise (or bias) between the INQ

and the UPQ. All UPQ and INQ values are fixed within [0, 1.0). These values are chosen
based on the experience of our previous work [4]. In each auction round the market-
place calls for ten bids. We use an independent-selection user model to decide which
recommendations displayed to the user will be rewarded [9, 4]. In this model, select-
ing one item is independent of selecting another and all recommendations with a UPQ

higher than a particular threshold will be rewarded. Here, we set this threshold to 0.75.
To correlate their INQs to the UPQs, all agents divide their INQ range into G = 20
equal segments. We assume that all agents share the same set of recommendations and
each agent has at least ten items in each segment. Before starting to bid, Qinit is set to
250, T = 200 and t0 = 1 for all agents. All agents are initially endowed with same
amount of credit (65536). At the beginning, each agent will bid the same (128) for
items from any segment, since it does not know which segments are more valuable than
others.

4.3 Learning Strategy Effectiveness

Having outlined the configuration of the agents, this section details the evaluations.
Among all the properties that we want the learning strategy to exhibit, convergence is
the most important. Indeed, in its absence, an agent loses its basis to reason. Thus, we
will start with experiments on the convergence of Q̂ values.

Convergence to Optimality: To evaluate an agent’s Q̂ value convergence, we arranged
300 consecutive auctions. Among the eight agents, the first four employ the good rec-
ommendation method and the last four employ the poor one. We find that, with a good
method, an agent’s Q̂ values always converge such that high INQ segments’ Q̂s (cor-
responding to high UPQ because of equation (5)) converge to high values and low
INQ segments’ Q̂s converge to low values (see Figure 3(a)). Specifically, the Q̂ val-
ues of those INQ segments corresponding to the UPQs above the user’s satisfaction
threshold (0.75) converge proportionally to their corresponding UPQs. The higher the
corresponding UPQ, the higher the Q̂i’s convergence value, because the recommenda-
tions from a segment corresponding to higher UPQs receive more immediate reward
than those corresponding to lower UPQs. The Q̂ values of those segments that corre-
spond to the UPQs below 0.75 converge to negative values, since they do not receive
rewards if their recommendations are displayed. Moreover, the convergence is inde-
pendent of the specific form of equation (5). Specifically, once there is a unique UPQ

level corresponding to each INQ level (even high INQ corresponding to low UPQ), the
Q̂ value of an INQ segment corresponding to a high UPQ will always converge to a
high level (since it induces high immediate rewards). However, with a poor method,

62 Y.Z. Wei, L. Moreau, and N.R. Jennings

(a)

-50

0

50

100

150

200

250

0 50 100 150 200 250 300

Q
 V

al
ue

Auctions

Q Profile of a Good Recommendation Method with Positive Initial Q Value

Q20 (INQ 0.95~1.00)
Q16 (INQ 0.75~0.80)
Q12 (INQ 0.55~0.60)
 Q8 (INQ 0.35~0.40)
 Q4 (INQ 0.15~0.20)

(b)

-50

0

50

100

150

200

250

0 50 100 150 200 250 300

Q
 V

al
ue

Auctions

Q Profile of a Poor Recommendation Method with Positive Initial Q Value

Q20 (INQ 0.95~1.00)
Q16 (INQ 0.75~0.80)
Q12 (INQ 0.55~0.60)
 Q8 (INQ 0.35~0.40)
 Q4 (INQ 0.15~0.20)

(c)

-100

-50

0

50

100

0 50 100 150 200 250 300

Q
 V

al
ue

Auctions

Q Profile without Considering Initial Q Value that Produces Bias

Q20 (INQ 0.95~1.00)
Q16 (INQ 0.75~0.80)
Q12 (INQ 0.55~0.60)
 Q8 (INQ 0.35~0.40)
 Q4 (INQ 0.15~0.20)

Fig. 3. Q-Learning Convergence

an agent’s Q̂ values cannot converge such that high INQ segments’ Q̂s converge to
high values (see Figure 3(b)). This is because a specific INQ corresponds to very dif-
ferent UPQs (and very different immediate rewards) at different times because of equa-
tion (6).

To exemplify that our learning algorithm (4) overcomes the bias problem that may
occur in (2), we organized another set of experiments with all agents taking zero initial
Q̂i values (all other settings remained unchanged (see Figure 3(c))). From Figure 3(c),
we can see that Q̂12 is updated only once and with a very small value of -82 (this
gives the corresponding action virtually no chance of being selected in future). Q̂16

also produces a bias in the beginning. In even worse cases, Q̂16 can never update itself
like Q̂12 (although, it should actually have a positive expected revenue). However, with
positive initial Q̂i values, such biases do not occur (see Figure 3(a)).

Individual Rationality: The agents with good methods are able to know what recom-
mendations better satisfy the user. Therefore, they can achieve more immediate rewards.

Market-Based Recommender Systems 63

(a)

60000

80000

100000

120000

140000

160000

180000

0 50 100 150 200 250 300

B
al

an
ce

Auctions

Agents’ Balance with Learning

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6
Agent 7
Agent 8

(b)

60000

80000

100000

120000

140000

160000

180000

0 50 100 150 200 250 300

B
al

an
ce

Auctions

Agents’ Balance without Learning

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6
Agent 7
Agent 8

Fig. 4. Recommenders’ Balance

Thus, good recommendations are raised more frequently by a learning agent than by a
non-learning one. This, in turn, means learning agents can maximize their revenue by
selecting good recommendations. In particular, Figure 4 shows that good recommen-
dation methods with learning capability (the first four agents in Figure 4(a)) make, on
average, significantly greater amounts (about 43%) of credit than those without (the
first four agents in Figure 4(b)). With a poor method, the agents cannot relate their bids
to the user’s interest and therefore bid randomly. Thus, they cannot consistently achieve
positive immediate rewards and their revenue is low (the last four agents in Figure 4 (a)
and (b)).

Quick Market Convergence: We have shown that market convergence enables the
agents to know what prices to bid for recommendations relating to certain UPQs so as to
gain maximal revenue [3, 4]. Thus, quick market convergence lets agents reach this state
quickly. To evaluate this, we organized two sets of experiments (using the same settings
as the experiments assessing the convergence). The first one contains all learning agents
and the other contains none. We find that a marketplace with learning agents always
converges quicker than the one without. From Figure 5, we can see that a marketplace
with learning agents (Figure 5(a)) converges after about 40 auctions, whereas one with-
out (Figure 5(b)) converges after about 120 auctions. Indeed, as the learning agents’ Q̂
profiles converge, more high quality recommendations are consistently suggested (since
their high Q̂ values induce high probability for the agent to bid these items because of
equation (3)) and low quality ones are deterred. This, in turn, accelerates effective price
iterations to chase the market equilibrium. It takes approximately one third of the time
for a market with learning agents to chase the equilibrium compared to one without.

Best Recommendation’s Identification: To evaluate the learning strategy’s ability to
identify the best recommendation (from the viewpoint of the user, i.e. the top UPQ item)
quickly and bid it consistently, we use the same set of experiments that were used to
assess the market convergence. We then trace the top UPQ item highlighted by a ran-
domly selected learning agent with a good recommendation method and a correspond-

64 Y.Z. Wei, L. Moreau, and N.R. Jennings

(a)

100

120

140

160

180

0 50 100 150 200 250 300

S
ho

rt
lis

t P
ric

e

Auctions

A Market with Learning Agents

1st Bid
4th Bid

10th Bid
the best item raised by a randomly selected agent

(b)

100

120

140

160

180

0 50 100 150 200 250 300

S
ho

rt
lis

t P
ric

e

Auctions

A Market without Learning Agents

1st Bid
4th Bid

10th Bid
the best item raised by the corresponding agent

Fig. 5. Market Convergence

ing one from a non-learning agent in Figure 5 (a) and (b) respectively. We do this by
plotting this top UPQ items’ bidding prices with circle points in the figures. To clearly
display the points of the trace and not to damage the quality of lines (representing the
three displayed bids), we do not display the points when this item is raised by other
agents. From Figure 5(a), we can see that this item’s bidding price keeps increasing
till it converges to the first bid price of the displayed items. This means that as long
as the randomly selected agent chooses this particular item to bid in an auction (after
the market converges), it is always displayed in the top position displayed to the user.
However, in contrast, this phenomenon in a market without learning agents proceeds
slowly (see Figure 5(b)). This means that a learning market can satisfy the user more
quickly than a non-learning one. Additionally, a learning market raises the best recom-
mendation more frequently (39 times by the selected learning agent, see Figure 5(a))
than a market without learning capability (13 times by the corresponding non-learning
agent, see Figure 5(b)).

5 Related Work

The learning strategy presented in this paper significantly improves our previously re-
ported market-based recommender system [3, 4] by speeding up the market’s ability to
make good recommendations. Previously, the strategy we developed for selecting which
recommendations to bid was random (i.e. an agent randomly selects an item from any
one of the G INQ segments in one auction round) [4]. While this strategy performed

Market-Based Recommender Systems 65

sufficiently to enable the viability of the market-based recommender to be evaluated,
it sometimes presented poor recommendations for too long and learned the user’s in-
terests too slowly. In contrast, by learning the expected revenue of each INQ segment
and consistently bidding on those items that have high expected revenue (since they sat-
isfy the user), an agent quickly identifies the best recommendation and maximizes its
revenue (making 43% more credits than our previous method). With all agents employ-
ing the learning strategy, the market converges quickly (in about one third of the time
of the previous method) and satisfies the user more consistently (making high quality
recommendations about three times as often as the previous method).

In terms of learning users’ interests, most existing recommender systems use tech-
niques that are based on two kinds of features of recommendations: objective features
(such as textual content in content-based recommenders) and subjective features (such
as user ratings in collaborative recommenders). For example, LIBRA is a book rec-
ommender system that extracts textual information from books that a user has pre-
viously indicated a liking for and learns his/her interests through the extracted con-
tents [10]. GroupLens is a Usenet news recommender that predicts the INQ of a specific
recommendation based on other users’ ratings on it [8]. However, many researchers
have shown that learning techniques based on either objective or subjective features
of recommendations cannot successfully make high quality recommendations to users
in all situations [11, 12, 2]. Thus, no one learning technique is universally best for all
users in all situations. The fundamental reason for this is that these existing learning
algorithms are built inside the recommenders and, thus, the recommendation features
that they employ to predict the user’s preferences are fixed and cannot be changed.
Therefore, if a learning algorithm is computing its recommendations based on the fea-
tures that are relevant to a user’s context, the recommender is able to successfully
predict the user’s preferences (e.g. a customer wants to buy a “blue” cup online and
the recommendation method’s learning algorithm is just measuring the “colour” but
not the “size” or the “price” of cups). Otherwise, if the user’s context related features
do not overlap any of those that the learning algorithm is computing on, the recom-
mender will fail (e.g. the user considers “colour” and the learning algorithm measures
“size”).

To overcome this problem and successfully align the features that a learning tech-
nique measures with a user’s context in all possible situations, we seek to integrate
multiple recommendation methods (each with a different learning algorithm) into one
single system and use an overarching marketplace to coordinate them. Essentially, our
market-based system’s learning technique encapsulates more learners and each learner
computes its recommendations based on some specific features. Thus, our approach has
a larger probability of relating its features to the user’s context and so, correspondingly,
has a larger opportunity to offer high quality recommendations.

In terms of general work on market-based recommendations, the most related work
to our own is that of [9]. This work uses a market to competitively allocate consumers’
attention space in the domain of retailing online products (such as PC peripherals).
Here, the scarce resource is the consumer’s ability to focus on a set of banners or
products. However, both this work and our own use the market mechanisms in dif-
ferent ways to help recommendations. The market in [9] is used only to coordinate

66 Y.Z. Wei, L. Moreau, and N.R. Jennings

agents’ bidding, whereas ours is used not only for this purpose, but also to
correlate the INQ to the UPQ of recommendations (i.e. the quality classification and
alignment).

6 Conclusions and Future Work

To be effective in a multi-agent recommender system (such as our market-based sys-
tem), an individual agent needs to adapt its behaviour to reflect the user’s interests.
However, in general, an agent initially has no knowledge about these preferences and
it needs to obtain such information, but, in so doing, it needs to ensure that it contin-
ues to maximize its revenue. To this end, we have developed a quality classification
mechanism and a reinforcement learning strategy that achieve this balance. Essentially,
our approach enables an agent to classify its recommendations into different categories
(based on its own quality measure) and then direct the right categories of items to the
right users (by learning their interests by bidding and by receiving rewards). Specifi-
cally, through empirical evaluation, we have shown that our strategy works effectively
at this task. In particular, a good recommendation method equipped with our learning
strategy is capable of rapidly producing a profile of the user’s interests and maximiz-
ing its revenue. Moreover, a market in which all agents employ our learning strategy
converges rapidly and identifies the best recommendations quickly. Finally, we showed
that our Q-learning strategy with positive initial Q̂ values avoids bias. For the future,
however, we need to carry out more extensive field trials with real users to determine
whether the theoretical properties of the strategy do actually hold in practice.

References

1. Resnick, P., Varian, H.R.: Recommender Systems. Communications of the ACM 40 (1997)
56–58

2. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information Systems 22 (2004) 5–53

3. Wei, Y.Z., Moreau, L., Jennings, N.R.: Recommender systems: A market-based design. In:
Proceedings of International Conference on Autonomous Agents and Multi Agent Systems
(AAMAS03), Melbourne (2003) 600–607

4. Wei, Y.Z., Moreau, L., Jennings, N.R.: Market-based recommendations: Design, simulation
and evaluation. In: Proceedings of International Workshop on Agent-Oriented Information
Systems (AOIS-2003), Melbourne (2003) 22–29

5. Mitchell, T.: Machine Learning. McGraw Hill (1997)
6. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of

Artificial Intelligence Research 4 (1996) 237–285
7. Thorndike, E.L.: Animal intelligence: An experimental study of the associative processes in

animals. Psychological Monographs 2 (1898)
8. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: Grouplens:

Applying collaborative filtering to usenet news. Communications of the ACM 40 (1997)
77–87

9. Bohte, S., Gerding, E., Poutré, H.L.: Market-based recommendation: Agents that compete
for consumer attention. ACM Transactions on Internet Technology 4 (2004) 420–448

Market-Based Recommender Systems 67

10. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text catego-
rization. In: Proceedings of the 5th ACM Conference on Digital Libraries, TX, US (2000)
195–204

11. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word
of mouth”. In: Proceedings of Conference on human factors in computing systems. (1995)
210–217

12. Montaner, M., Lopez, B., Dela, J.L.: A taxonomy of recommender agents on the internet.
Artificial Intelligence Review 19 (2003) 285–330

SNet Reloaded: Roles, Monitoring
and Agent Evolution

Günter Gans1, Dominik Schmitz1, Thomas Arzdorf1, Matthias Jarke1,2,
and Gerhard Lakemeyer1

1 RWTH Aachen, Informatik V, Ahornstr. 55, 52056 Aachen, Germany
2 Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

{gans, schmitz, jarke, lakemeyer}@cs.rwth-aachen.de

Abstract. In previous work, we proposed the prototype environment
SNet for the representation and dynamic evaluation of agent-based de-
signs for inter-organizational networks. A key feature of SNet is the
automatic translation of extended i* models into the action language
ConGolog. In order to run realistic simulations, the resulting agents are
deliberative in that they can choose between different courses of action
according to some utility measure. When applying SNet to modelling an
existing entrepreneurship network, we discovered a number of deficien-
cies of our current proposal, in particular, the lack of a role concept, the
ability to monitor the execution of plans that depend on other agents’
contributions and the ability to model agents that evolve over time. In
this paper we will sketch the example domain and discuss how these new
features can be incorporated in the SNet framework.

1 Introduction

In previous work, we proposed the prototype environment SNet to model strate-
gic inter-organizational networks, which are comprised of human, organizational,
and technological actors [5]. A crucial aspect of these networks are the interde-
pendencies among the various actors, which result, for example, from the need to
delegate certain activities, which in turn requires a certain level of trust between
the (human) members of the network. The agent-based graphical modelling lan-
guage i* [19], which was developed for early requirements engineering, has proven
to be particularly suitable as a modelling means in this context because it ex-
plicitly deals with dependency relations, besides other notions of actors, goals,
resources and tasks. To capture the dynamic aspects of agent networks we [3]
and Wang and Lespérance [18] independently proposed to amalgamate i* and
the action formalism ConGolog [2]. To bridge the gap between the two for-
malisms we extended i* by features to describe task preconditions and effects.
These extended i* diagrams are automatically translated into executable Con-
Golog programs, supported by the metadata manager ConceptBase [9]. Running
simulations for different scenarios within a network is useful for analyzing its
properties and can provide the foundation of a decision-support tool for network
members.

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 68–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SNet Reloaded: Roles, Monitoring and Agent Evolution 69

In recent work [4] we introduced a decision-theoretic planning component for
each network representative to run even more realistic simulations, but up to
now we modelled only toy examples. Currently we are considering, for the first
time, a real-world example taken from the entrepreneurship domain. odelling
the MIT entrepreneurship network in SNet in detail – based on transcripts of
interviews colleagues made on site – has revealed three major deficiencies of our
current proposal.

– The original i* framework already supports agent abstraction mechanisms
called roles. These are missing in the current version of SNet, which makes
it very awkward to use when modelling large applications.

– When delegating tasks to other agents, it is often important for the delegator
to monitor the progress of the delegatee’s activities. So far, however, there
is no support for this in SNet.

– As we will see, an important feature of the entrepreneurship domain is that
agents evolve over time in systematic ways, and it would be helpful to ex-
plicitly represent these transitions within the model.

In this paper, we will introduce the entrepreneurship domain and discuss ongoing
work on how roles, monitoring and agent evolution can be incorporated into the
SNet framework.

The rest of the paper is organized as follows. In Section 2, we introduce our
SNet simulation and modelling tool and the example from the entrepreneurship
domain. After that, each of the three identified challenges is presented in its own
section, i. e. the ideas concerning a role concept are discussed in Section 3, the
monitoring mechanism in Section 4, and agent evolution in Section 5. We end
the paper with a brief discussion.

2 The Modelling and Simulation Environment SNet

2.1 The Architecture of the SNet Tool

We base our modelling and simulation environment SNet for inter-organizational
networks on a combination of two formalisms: i* – a graphical modelling lan-
guage originally intended for describing early requirements – for statically mod-
elling the network and ConGolog – a logic-based high-level programming lan-
guage – for simulations so that dynamic aspects such as trust can be analyzed.
We take an agent-oriented view in that each actor of an inter-organizational net-
work is represented by a deliberative agent. We will discuss the features of the
two formalisms in more detail later on. First we give a short overview of their
overall interplay. The SNet architecture is depicted in Figure 1.

We use OME3 (Organization Modelling Environment) – a graphical model
editor developed at the University of Toronto [11] – to build up static models of
inter-organizational networks in the modelling language i* [19]. The semantics
of i* are defined in the knowledge representation language Telos [15], which is
also the formalism underlying ConceptBase [9], a deductive metadata repository.

M

70 G. Gans et al.

Concept

Base

OME/

i*

Telos

SNet Simulation

Viewer

Congolog

Interpreter

adaptations

available

models

real world

modeled world

User User

store

analyze

transformation

future:

store simulations

refinement

Fig. 1. SNet Architecture

The ConceptBase query language can be used for static analyses and especially
for the transformation into ConGolog. The execution of the resulting ConGolog
program is shown in a step-by-step view by the simulation viewer, which also
provides access to control the simulation run, i. e. the user creates scenarios by
simulating the proactivity of network members and investigates how this and
resulting delegations affect relationships (especially trust). Conclusions derived
by the user from such simulations might lead to modifications of the model or
scenario conditions that provide the basis for new simulation runs.

2.2 The Entrepreneurship Domain

During a four-month-stay at MIT Sloan School Entrepreneurship Center, col-
leagues interviewed about 20 different kinds of people inside the entrepreneurship
community. Based on this information we are currently building up an example
of a strategic inter-organizational network.

Figure 2 gives a rough impression of the actors involved in the entrepreneur-
ship network as well as their dependencies, represented as a strategic dependency
model in the i* formalism. Roughly, the circles denote actors, and labelled

rected connections between them denote dependencies (for the meaning
different labels see the legend). The entrepreneurship centre plays

a central role and has a vitalizing effect on the whole network culture. By par-
ticipating in networking events, all members can exchange information and it
is quite easy for potential entrepreneurs to get in touch with possible investors
and to communicate their business ideas. Such a network depends highly on
trust relationships. Venture capitalists (VCs), e. g., who plan to support an en-
trepreneur financially, trust in the professional expertise of faculty members
concerning business ideas.

The Technology Licensing Office (TLO) is responsible for handling intellec-
tual property. At MIT, the TLO awards the intellectual property developed at

of the
di

SNet Reloaded: Roles, Monitoring and Agent Evolution 71

preneur

keep

cooperation

developm.
successful

VC money

membership

Technol.
Licensing

Office

knowledge

tation
augmen−

good
ideas

financial
support

long term evaluation
do

contact for
future coll−
aboration

answers
conc. intel.

property

networking
events

Entre−

fee

successful
developm.

business
know−how

know−how
financial

Business
Angel

good

service,...
product,

leadership
good

Entrepr.−

Center

education

good

research
contact to

good

assurance
of share

Legend

Task

Goal

organize

Softgoal

share,

good
ideas

business
idea

Faculty
rating

good

money

Client

money

shares

Venture
Capitalist

(VC)more

legal
support

money

ship

Alumni Team

man
power

long term
job

cash flow

consulting

good

Resource

Fig. 2. Strategic Dependency (SD) Model of the MIT Entrepreneurship Network

MIT-laboratories in equal shares to the inventor (a potential entrepreneur), the
faculty and MIT. In return, the TLO provides legal support to protect intellec-
tual property.

An entrepreneur evolves in phases which correlate with financing rounds [16].
Financial support is typically provided by business angels and venture capi-
talists. In general, the former were successful entrepreneurs in the past with
domain-specific knowledge who prevailingly invest in the so-called seed stage
of an enterprise. In this stage, market studies have to take place and business
plans have to be elaborated. Venture capitalists are often banks with the finan-
cial power to support successful entrepreneurs in their money consuming later
phases. For example, the last phase is intended to bring the enterprise to the
stock exchange. So, the actor entrepreneur in Figure 2 is only a prototypical
entrepreneur. Strictly speaking we have to distinguish between different phases
of being an entrepreneur, because they all have (slightly) different dependencies.

More detailed information about the MIT Entrepreneurship Network are
available in [10].

2.3 An Extended Version of i*

The i* framework is a graphical language and includes the strategic dependency
(SD) model for describing the network of relationships among actors (see for
example Figure 2) and the strategic rationale (SR) model, which, roughly, de-

72 G. Gans et al.

scribes the internal structure of an agent in terms of tasks, goals, resources etc.
Compared to Yu’s original formulation, we added a few new features to SR mod-
els such as task preconditions (represented by an additional element (not shown
in the figure) and by sequence links). Figure 3 shows part of an extended SR
model from the entrepreneurship domain with a focus on the actors Venture
Capitalist, Entrepreneur and Faculty Members.

The venture capitalist’s task choose promising entrepreneur is decomposed
into three subtasks, which are partially ordered using sequence links (an easy to
use form of a task precondition). The task suggest business idea is delegated to
the actor Entrepreneur. Goals like ask evaluation provide a means of specifying
alternatives from which the modelled agent (respectively represented network
member) can choose at runtime. In this example, the venture capitalist can
choose to ask Faculty Member 1 or Faculty Member 2 for evaluation. Softgoals
are used to specify the criteria on which the deliberative component bases its
decision, e. g. report quality. Tasks can have preconditions and effects, repre-
sented by their own model element (but not occurring in the example above),
and produce or consume resources.

2.4 Mapping the i* Model to a ConGolog Program

ConGolog is based on the situation calculus, an increasingly popular language
for representing and reasoning about the preconditions and effects of actions [14].
It is a variant of first-order logic, enriched with special function and predicate
symbols to describe and reason about dynamic domains. Relations and functions
whose values vary from situation to situation are called fluents, and are denoted
by predicate symbols taking a situation term as their last argument. There is
also a special predicate Poss(a, s) used to state that action a is executable in
situation s.

ConGolog [2] is a language for specifying complex actions (high-level plans).
For this purpose, constructs like sequence, procedure and if-then-else, but also
non-deterministic (e. g. ndet) and concurrency (e. g. conc) constructs are pro-

Decomposition

Means−Ends

Contribution

Entrepr.

Capitalist promising
choose

entrepr.

decide

evaluation
ask

quality
report

Member 2
Faculty

evaluation
do

evaluation
doMember 1

Faculty

(1st stage)

idea
business
suggest

good
business

idea

100
2000

Legend
Venture

Sequence

Softgoal

Actor

Task

Goal

Fig. 3. Modelling in i*/SNet

SNet Reloaded: Roles, Monitoring and Agent Evolution 73

vided. ConGolog comes equipped with an interpreter, which maps these plans
into sequences of atomic actions assuming a description of the initial state of the
world, action precondition axioms and successor state axioms for each fluent.
For details see [2].

The mapping of the i* elements results in a possibly non-deterministic pro-
gram. A complex task is transformed into a procedure whereby the body is de-
rived from the sub-elements. The sequential relations between the sub-elements
are reflected via the use of sequence and conc. There are primitive actions pre-
ceding and following the body, so that the preconditions to and effects of this ele-
ment can be reflected in the program. Resources and softgoals are represented by
fluents. Precondition/effect elements (and for consistency reasons also sequence
links) are mapped to precondition axioms and effect axioms, respectively.

Here is an excerpt of the transformation into ConGolog of the Venture Cap-
italist modelled in Figure 3.

proc(choose promising entrepreneur(venture capitalist),
[pre choose promising entrepreneur(venture capitalist),
delegate(suggest business idea(entrepreneur)),
ask evaluation(venture capitalist),
decide(venture capitalist)
post choose promising entrepreneur(venture capitalist)])

The task choose promising entrepreneur is turned into a procedure. In gen-
eral, while calling its sub-elements, concurrency is used whenever possible. Dele-
gated subtasks are specially marked. (Sub-)Tasks which are not decomposed any
further are turned into primitive actions such as decide, for which precondition
axioms (poss) and effect axioms (see Sect. 3) need to be specified.

poss(decide(venture capitalist), s) ≡
fulfilled(ask evaluation(venture capitalist), s)

The task decide(venture capitalist) is executable in situations s iff the flu-
ent fulfilled(ask evaluation(venture capitalist), s), which denotes that the goal
ask evaluation(venture capitalist) has been achieved, holds in situation s.

The transformation of goal elements and their fulfilling tasks is rather similar
to the one of complex tasks, but the sub-elements are combined by the nonde-
terministic choice operator ndet to reflect the fact that one of these alternatives
has to be chosen at runtime. We leave this out here for reasons of space.

To run simulations we provide an environment which equips each agent with
a decision theoretic planning component to reason about which alternative to
choose according to the specified criteria (softgoals). See [4] for details.

2.5 From Limits Towards New Challenges

In the following we concentrate on three challenges which result from the attempt
to model the MIT entrepreneurship network in SNet.

74 G. Gans et al.

Role concept. As can easily be seen from the example, real-world models can
become very large (see for example Figure 2 which is on the SD modelling
level only!). It is unrealistic to expect that, for such big networks modelling
each agent instance individually in the SR model is feasible. Furthermore, a key
feature of strategic networks is redundancy. Despite minor differences there are
often several network members capable of doing the same task,1 e. g., in the
entrepreneurial environment there is not just one venture capitalist and not just
one faculty member able to assess business ideas. To enforce explicit modelling
of the same capability over and over again seems a waste of effort. Thus, the idea
now is to use roles and positions, which are already present in the original i*, to
specify capabilities more generally and provide the instantiation separately. The
challenges concerning this will be discussed in Sect. 3.

Monitoring. In the current SNet implementation, the delegator is not in a po-
sition to observe, evaluate and influence any of the tasks she delegated until
they are finished. Especially in the context of long term delegations, this seems
unnatural. For instance, the venture capitalist wants to be aware of the en-
trepreneur’s activities, after giving him $ 1, 000, 000. Monitoring progress during
the execution of tasks is one means of estimating possible risks in order to be
able to avert worst-case scenarios and emphasizes the important role of distrust
in inter-organizational networks as proposed in [3]. More details are discussed in
Sect. 4.

Agent evolution. Another aspect which becomes apparent from our real-world
example is that network members evolve over time. As already mentioned, sev-
eral financial stages through which an entrepreneur evolves can be identified
(see [16]). During evolution, possibilities, capabilities and dependencies of a net-
work member change. Since our goal is to provide decision support for members
of real-world networks, the agent society representing the network under consid-
eration must reflect what is happening in the real world. This means also that
the development of agents in a simulation is not arbitrary. A specification of
how an agent can evolve might be known in advance and a way to specify this
should accordingly be provided. Ideas concerning this challenge are presented in
Sect. 5.

3 Modelling Roles Instead of Individual Agents

In [20] Yu and Mylopoulos present a detailed description of the actor elements
available in i*. They define a role to be an abstract actor with which dependencies
should be associated if they apply, regardless of who plays the role. In contrast to
this, an agent is a concrete manifestation of an actor and can have dependencies
that apply regardless of what roles are played by this agent. Finally, a position

1 This results from the insight that, to enforce flexibility, competition between network
partners should occur.

SNet Reloaded: Roles, Monitoring and Agent Evolution 75

is used as an intermediate abstraction in that it describes a set of roles that are
typically assigned jointly to one agent. A position is said to cover roles and an
agent is said to occupy a position. Actor is used as the unifying general concept
with all the described sub types as specializations.

In the entrepreneurial environment only the Technology Licensing Office
(TLO) and the entrepreneurship centre can be seen as individual agents, be-
cause only one instance exists. For all the other actors (e. g. venture capitalist)
we implicitly see them as roles which have to be instantiated.

For a choice between redundant capabilities to make sense, their offerings
must differ. Thus, elements of a role or a position must be identified that can
be instantiated. A close look at our current modelling practice (see Section 2 or
more detailed in [4]) reveals that at least the duration of tasks and the contribu-
tions towards softgoals should be parameters to a role and thus specified during
instantiation. The range of these parameters is simply numerical.

For example, the two faculty members who were introduced in the example in
Figure 3 differ in the way they do evaluations. Say Faculty Member 1 needs only
1 week whereas Faculty Member 2 needs 2 weeks but provides a more detailed
analysis which manifests itself in a higher report quality.

For the instantiation of roles, parameterized by duration and softgoal con-
tributions (note that an agent is of course allowed to instantiate more than
one role), we propose as a first realization a simple table-based approach which
queries the prespecified parameters for each instance of a role. Since this infor-
mation simply extends the abstract model, it is easy to allow for constructing
different scenarios that can then be evaluated in simulations.

Although there is a big conceptual difference between our previous practice
of explicit agent modelling and modelling roles that have to be instantiated, this
so far does not have a great impact on the transformation procedure and the
resulting ConGolog programs. We already use the identifier of an agent as a
parameter to all primitive actions, procedures or fluents which result from its
modelling. Thus, the different instantiations of a role can simply be “compiled”
into ConGolog code. For instance, the different contributions to the softgoal
report quality by the two faculty members are reflected as follows:

report quality(do(a, s)) = rq ≡
(a = do evaluation(faculty member 1) ∧ rq = report quality(s) + 100)

∨ (a = do evaluation(faculty member 2) ∧ rq = report quality(s) + 2, 000)
∨ (a
= do evaluation(faculty member 1)

∧ a
= do evaluation(faculty member 2) ∧ rq = report quality(s))

Executing an action a in situation s leads to a new situation where the fluent
report quality gets a new value: rq. If a is do evaluation(faculty member 1)
(do evaluation(faculty member 2)) then rq, the report quality in situation s,
is increased by 100 (2, 000). Otherwise, the report quality stays the same.

One obvious advantage of this new feature is that alternatives for delegating
a task need not be represented explicitly any more (see [4])). The transformation
procedure expands a delegation to a wide non-deterministic choice between the

76 G. Gans et al.

instantiating agents upon which the delegator agent has to decide at runtime
using its deliberative planning component.

In earlier papers (e. g. see [4]) we discussed more general differences between
Wang and Lespérance’s [18] and our approach to the combination of i* and Con-
Golog. Concerning the transformation of roles and positions they map a role only
into a procedure but similarly use a parameter to identify instances. In contrast
to our proposal they do not provide any means to allow for differences between
instances. Furthermore in SNet the execution of a role’s activity is initiated on
demand (i. e. results either from simulated pro-activity or a delegation request)
and is not simply procedurally driven.

The means to instantiate a role presented here are still rather simplistic
and presumably not sufficient. Instances of a role can differ in more than only
parameters concerning duration and softgoal contributions, e. g., a third faculty
member might be able to internally choose between alternatives to serve both
types of evaluation requests – fast ones and extensive high-quality ones. While
i* admits specialization links between actor elements a clear formalization is
missing. But with ConGolog as a foundation it seems possible to provide a
formalization of specializing behavior, an area we are currently investigating.

4 Monitoring in SNet

4.1 A General Monitoring Framework

We begin by sketching a general framework for monitoring within strategic inter-
organizational networks. We concentrate on monitoring between two actors (del-
egator and delegatee) who have an ongoing delegation relationship. Figure 4 gives
an overview of the framework. Conceptually we distinguish between a rationale
layer and an activity layer. The former is used to specify the underlying agent-
internal rationales. The latter details how an actor actually performs monitoring.
We propose three phases namely initiating monitoring, gathering information,
and drawing conclusions. This control cycle like structure may constitute moni-
toring in our context.

The Rationale Layer shows how, within an ongoing delegation relationship,
the delegator decides on the monitoring importance on the basis of experi-
ences made with the delegatee and the subjective expectation of the delegatee’s
progress. The monitoring importance together with the costs for the various pos-
sible monitoring activities serve as the input for the computation of the moni-
toring utility, which subsequently determines when, how and to which degree to
monitor next.

Initiating Monitoring. At the activity layer, the initiating monitoring compo-
nent’s responsibility is to activate monitoring at the right time. If, for example,
the delegator has had good experiences with the delegatee, the losses to be ex-
pected are low – maybe the importance of the task is low – or monitoring in this
context is expensive, then the next monitoring time need not occur soon.

SNet Reloaded: Roles, Monitoring and Agent Evolution 77

Trigger

Module

Gathering Information

Update

Module

Monitoring Cost

Model

Utility

Model

Experiences

- kind of monitoring

- intensity of monitoring

Monitoring

Importance

Monitoring

Utility

Legend:

data

trigger

Initiating Monitoring Drawing Conclusions

Resulting

Activities

Expectation

Model

Activity Layer

Rationale Layer

Fig. 4. A General Monitoring Framework

Gathering Information. Monitoring can be done at different levels, which often
correlates with costs and the quality of information. For example, the venture
capitalist gets information about the entrepreneur she gave a lot of money to by
reading the newspaper, making phone calls, visiting the entrepreneur or even –
more expensively – hiring a consultant with domain-specific knowledge.

Drawing Conclusions. The delegator’s utilities and experiences with the partner
have to be updated after information has been gathered. New information serves
as a better estimation of the current risks and the expectations concerning the
monitored task. Additionally, the extent of the discrepancy between the expected
performance of the delegated task and the monitored performance has an influ-
ence on what further activities the delegator takes (increase future monitoring
activities, reconsider situation by searching for better alternatives or even abort
the cooperation directly to avoid wasting any more resources). In our example
it might be a suitable decision for the VC to cancel her financial funding if the
entrepreneur fails to meet her expectations.

In [6] De Giacomo, Reiter, and Soutchanski describe execution monitoring
of high-level robot programs within the action language ConGolog. They intro-
duce a logic-based mechanism for recovering from observed discrepancies be-
tween the real world and its internal representation. While they monitor an
agent’s own plan in execution, we propose to monitor tasks that are delegated
to other agents. Consequently we do not have a direct influence but can only
revise the cooperation. Monitoring is also done in financial risk management
systems – as one representative see [17], which is based on intelligent agents.
Here it is important that monitoring happens in real-time. The agents are
purely reactive and are specialized, e. g., on the collection of data or to give
an alert whenever predefined thresholds are exceeded. In other words, these
agents are only a kind of “intelligent sensors” and do not represent human
actors.

78 G. Gans et al.

4.2 Monitoring in SNet

Before we can instantiate the general monitoring framework described in the
preceding section for SNet we first have to establish some foundational aspects.
By conceptually distinguishing between global and local fluents we induce partial
observability into SNet, a prerequisite for monitoring. While the global fluents
are always visible to all actors, the local ones belong to one actor and can only
temporarily be accessed during monitoring by the delegator. Enforcing this re-
striction is left to the implementation. Furthermore, we have to decide on the
aspects that can be monitored in SNet. For the current version, we have chosen to
let the softgoal contributions be such aspects. This correlates with the fact that
these are also instance-specific as described in Sect. 3. Hence, the delegator can
see intermediate softgoal contributions, not only the overall contribution after
the delegated task is finished. Further aspects of observation might be included
in the future.

In the remaining monitoring section, we illustrate our first monitoring mech-
anism for SNet by referring again to the entrepreneurship example. We mainly
focus on the rationale layer, which enables us to determine the next monitoring
time and briefly sketch the other aspects. Figure 5 shows a long term delegation
between a venture capitalist (VC) and an entrepreneur. The situation is as fol-
lows. The VC has agreed to the business plan proposed by the entrepreneur. A
market study has taken place and as a result the whole project seems to have a
realistic chance of big success. Additionally, an appropriate office has been found
and the VC is willing to support the first three months financially in order to
give the entrepreneur the chance to hire five employees, buy hardware and make
a first prototypical implementation of the software to be developed.

preneur hire 5
employees

buy
hardware

do a 1st
implem.

develop 1st
prototype

1st job for
entrepr.

have 5
employees

hardware
appropriate

1st implem.

Entre−

VC

quality of

Fig. 5. A long term delegation

Thus, to instantiate the expectation model of the general framework the
delegator must have an expected development of each softgoal contribution in
her mind. These are represented by real-valued functions ê(t), ĥ(t), and î(t) over
the time (defined in Figure 6).

A utility function combines these expected softgoal contribution functions to
a function of the expected utility development over the time. To keep it simple

SNet Reloaded: Roles, Monitoring and Agent Evolution 79

11 1

11

1

22 2

2

33 3

3
0.50.5

4

5

ê(t) ĥ(t) î(t)

ttt

employees hardware implementation

î(t) = 1
9
· t2

Fig. 6. Expected development of contributions

the utility-functions are user-defined linear combinations. Thus, the relevance of
the different criteria can be controlled by their weights, i. e. a weight of zero is
assigned if a criterion is irrelevant.

Util(t) = 4, 000 · e(t) + 20, 000 · h(t) + 60, 000 · i(t)
ExpUtil(t) = 4, 000 · ê(t) + 20, 000 · ĥ(t) + 60, 000 · î(t)

While ExpUtil(t) is the expected utility at time t, with Util(t), we denote the
utility based on the actual contributions – e(t), h(t), and i(t) – which are the
values of the corresponding (local) fluents visible for the delegator via the infor-
mation gathering activity at the monitoring time t. So, for example, the overall
expected utility of the whole delegation, i. e. after 3 months, is

ExpUtil(3)=4, 000·5+20, 000·1+60, 000·1=20, 000+20, 000+60, 000=100, 000.

The trigger module uses this as one important input to derive the next mon -
toring time (we use a discrete time model, see [4] for details) by determining
the smallest value nmt satisfying the following inequality:

ExpUtil(nmt) − ExpUtil(now) >
α

Distrust
· MonitoringCosts

where now is the current moment, Distrust ∈ [0, 1]2 and α a positive real
constant. 1/α denotes the maximum portion of the expected utility gain the
delegator is willing to spend on monitoring. The MonitoringCosts must be
specified by the user because they are domain specific. Notice that monitoring
importance and monitoring utility are not instantiated explicitly but encoded
into the formula above. In our example, since normally the VC has the right to
see the entrepreneur’s performed tasks and can take a look into the books, the
information gathering is quite easy and therefore the resulting monitoring costs
are low.

As a very SNet-specific feature the above computation includes distrust. In
SNet a delegator stores a distrust value – a real between zero and one – for

2 For Distrust = 0 monitoring need not occur. Thus, nmt is set to ∞.

i

80 G. Gans et al.

every delegatee as one part of a sophisticated trust model, which represents
the experiences so far and correlates with the expected deviation that could
take place and thus results in a measure for the monitoring importance. Let’s
remark that we have a special view on distrust, which differs from the prevalent
opinion, that distrust is just the absence of trust [12]. While trust reflects the
level of commitment, distrust reflects the level of awareness. So, it is possible
that somebody has a lot of distrust in another actor – and therefore performs
monitoring again and again – but is not able to find a better strategy without
this actor. So, she has to act trustfully. See [3] for a more detailed description of
the trust-distrust model supporting this issue.

Now intuitively the above inequality does the following. Let’s suppose the
distrust-value is maximal, i. e. 1. Monitoring is useful if the increment of the
expected utility from now till the next monitoring point is higher than the
multiple α of the monitoring costs. For instance α is chosen to be 10 and the
MonitoringCosts are 2, 000 then monitoring should happen when the expected
utility has grown by 20, 000. If distrust is halved the next threshold for moni-
toring would be doubled. Of course, the proposed formula is quite simple and –
among others – does not mention monitoring results. Thus, it will presumably
be elaborated in the future.

Beside the re-calculation of the distrust value, which thus indirectly influences
the determination of the next monitoring time, the VC in our example might
notice that the entrepreneur is not able to hire any employees, i. e. supporting the
corresponding softgoal. Thus, as one way to draw conclusions she might decide
to ask an agent who is specialized on hiring employees and willing to help. The
specification of this could be incorporated into the i* model by means of an
exception or fault handling mechanism similar to the one in BPEL4WS [1]. This
is left for future work.

5 Meta Agent Development (MAD)

Using the term “Meta Agent Development” to describe this framework empha-
sizes that specifying the possibilities regarding how an agent might evolve con-
cerns a different level than specifying the functioning of a role and the depen-
dencies towards other roles. Agent evolution inevitably concerns time and taking
history into account. It must be possible to refer to roles played earlier, to the
time that has passed since, maybe also to some measure on how successful an
agent was playing a role.

Furthermore, the introduction of the concept of agent development enforces
a different transformation of the i* model in that we can no longer provide
a hardwired representation of an agent’s capabilities. Mathieu, Routier, and
Secq [13] propose a model of agency that is able to represent agent develop-
ment. They consider an agent to be built from an atomic agent by dynamic
skill acquisition. In our context, this can be achieved by means of a relational
fluent roles(Agent, Role, s) and appropriate actions modifying this fluent. This
enables the assignment to be dynamically accessed and modified from within
simulations.

SNet Reloaded: Roles, Monitoring and Agent Evolution 81

Returning to our example from the entrepreneurship domain, one could state
that an entrepreneur e in Stage 1 is allowed to evolve to Stage 2 iff a faculty f
certifies successful development, a venture capitalist vc decides to invest more
money and the entrepreneur has been in the first stage for at least 3 months.3

precondition(entrepreneur2ndStage, e, s) ≡
∃f (roles(faculty, f, s) ∧ confirm successful development(f, e, s))
∧ ∃vc (roles(venture capitalist, vc, s) ∧ decision to invest(vc, e, s))
∧ ∃s′ (time(s) = now ∧ time(s′) = t ∧ (now − t) > 3 months ∧

∀s′′(s ≥ s′′ ≥ s′ ⊃ roles(e, entrepreneur1stStage, s′′)))

To eventually install the feature of agent development we need some new high-
level mechanism (similar to the planning component) provided by the simulation
environment which allows an agent to change (acquire, loose) roles according to
the conditions specified. While for a first realization we assume that satisfied
conditions enforce a role transition, for some domains it might be more realistic
to allow an agent to deliberate about possible role transitions. In this case, some
additional criteria on which to base the decision must be modelled. This is also
the reason why we propose to avoid specifying transitions explicitly (e. g. via
automata or procedural descriptions) but prefer to associate preconditions with
each role. This provides more flexibility in that it allows for development (i. e. a
series of roles) that the modeler possibly has not thought of – thus combining
the ability to specify development with self-adaptability of the agents during a
simulation.

Returning to our example, the above formula would then be associated with
the role Entrepreneur 2nd stage as a precondition, e. g. as an attribute. Since
currently we assume that satisfied conditions enforce role transitions, this can
simply be realized by a primitive action change role which changes the fluent
roles appropriately via an effect axiom if the corresponding condition is fulfilled.4

roles(Agent, Role, do(a, s)) ≡
(a = change role ∧ precondition(Role, Agent, s)) ∨ . . .

The reader should note the difference between the role concept of Section 3
and agent evolution. While roles (contrasting individual agents) are used
statically when instantiating the model, agent development as described in this
section occurs at runtime.

Finally, we remark that Gross and Yu [7] are also concerned with a form of
system evolution. However, they are mainly concerned with changing business
goals, which are introduced into the model manually, that is, they do not envisage
making the process of evolution part of the model itself, as in our case. One rea-
son for this might be that in the RE context, in which i* normally is used, agent

3 That a new role enforces losing a role played earlier, e. g. an entrepreneur that evolves
can only be in one stage at a time, has to be modelled explicitly. Furthermore a
Markovian version of this formula can easily be imagined by collecting information
concerning roles played earlier in some agent specific fluent.

4 Despite conceptual differences here a precondition somehow equals a poss axiom.

82 G. Gans et al.

evolution is much less predictable. Hoogendoorn et al. [8] deal with the integra-
tion of change processes in a formal multiagent organizational model. Similar to
our approach, they describe the structure of and the dynamics within organi-
zations separately (of course we regard networks). Their underlying formalism
for specifying the dynamic aspects (Temporal Trace Language) is comparable
to the situation calculus we use. However, while in their approach the change
process is driven by the organizational view, we focus on the development of the
individuals.

6 Conclusion

In this paper we proposed extensions to our modelling and simulation envi-
ronment SNet, which aim at coping with real-world examples taken from the
entrepreneurship domain. We concentrated on three aspects: a role concept,
monitoring and agent evolution. The introduction of the role concept improves
the modelling facilities by segregating the more abstract model from the de-
tails of agent instances and thus alleviates the modelling of larger networks.
The monitoring considerations relate to our model of trust especially the dis-
trust component and respond to the demand to be able to cope with long-term
delegations. Similarly, the extension concerning agent evolution also reflects a
requirement of the real world where such knowledge is available and hence should
also be regarded in the simulations.

For each aspect we see that further improvements can be achieved. In par-
ticular, a more sophisticated way to instantiate a role by specializing behavior
can be formalized with the help of ConGolog. In the proposed monitoring con-
cept especially the possibilities for specifying reactions to monitoring results are
much more multifaceted than captured up to now. In our model of agent evolu-
tion the interactions between roles and their evolution can be elaborated. But
most important is the evaluation of the whole approach, since it is now possible
to model real-world examples.

Acknowledgment

This work was supported in part by the Deutsche Forschungsgemeinschaft in
its Priority Program on Socionics, and its Graduate School 643 “Software for
Mobile Communication Systems”.

References

1. T. Andrews. Business process execution language for web services, IBM,
version 1.1, 2nd public draft release. http://www.ibm.com/ developerworks/
webservices/library/ws-bpel, May 2003.

2. G. de Giacomo, Y. Lespérance, and H.J. Levesque. ConGolog, a concurrent pro-
gramming language based on the situation calculus: language and implementation.
Artificial Intelligence, 121(1-2):109–169, 2000.

SNet Reloaded: Roles, Monitoring and Agent Evolution 83

3. G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Continuous requirements man-
agement for organization networks: A (dis)trust-based approach. Requirements En-
gineering Journal, Special Issue on selected papers from RE’01, Springer, 8(1):4–22,
Feb. 2003.

4. G. Gans, M. Jarke, G. Lakemeyer, and D. Schmitz. Deliberation in a modeling
and simulation environment for inter-organizational networks. In Proc. of the 15th
Int. Conf. on Advanced Information Systems Engineering (CAiSE03), LNCS 2681,
pages 242–257, Klagenfurt, Austria, June 2003.

5. G. Gans, M. Jarke, G. Lakemeyer, and T. Vits. SNet: A modeling and simulation
environment for agent networks based on i* and ConGolog. In Proc. of the 14th
Int. Conf. on Advanced Information Systems Engineering (CAiSE02), LNCS 2348,
pages 328–343, Toronto, Canada, May 2002.

6. G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-
level robot programs. In Proc. of the 6th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’98), pages 453–465, 1998.

7. D. Gross and E. Yu. Evolving system architecture to meet changing business goals:
an agent and goal-oriented approach. In ICSE-2001 Workshop: From Software
Requirements to Architectures (STRAW 2001), pages 13–21, Toronto, Canada, May
2001.

8. M. Hoogendoorn, C. Jonker, M. Schut, and J. Treur. Modeling the organisation
of organisational change. In Proc. of the 6th Int. Bi-Conf. Workshop on Agent-
Oriented Information Systems (AOIS04), pages 29–46, 2004.

9. M. Jarke, S. Eherer, R. Gallersdörfer, M. A. Jeusfeld, and M. Staudt. Concept-
Base - a deductive object base for meta data management. Journal of Intelli-
gent Information Systems, Special Issue on Advances in Deductive Object-Oriented
Databases, 4(2):167–192, 1995.

10. M. Jarke, R. Klamma, and J. Marock. Zu den Wirkungen des regionalen Kontexts
auf Unternehmensgründungen, chapter Gründerausbildung und Gründernetze im
Umfeld technischer Hochschulen: ein wirtschaftsinformatischer Versuch, pages 115–
154. EUL-Verlag, 2003.

11. L. Liu and E. Yu. Organization Modeling Environment (OME). WWW, [Accessed
March 1, 2005]. http://www.cs.toronto.edu/km/ome.

12. S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Dept. of
Computer Science and Mathematics, University of Stirling, April 1994.

13. P. Mathieu, J.-C. Routier, and Y. Secq. Dynamic skills learning : a support to
agent evolution. In Proceedings of AISB’01, pages 25–32, York, 2001.

14. J. McCarthy. Situations, actions and causal laws. Technical report, Stanford Uni-
versity, 1963. Reprinted 1968 in Minsky, M.(ed.): Semantic Information Processing,
MIT Press.

15. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos - representing
knowledge about information systems. ACM Transactions on Information Systems,
8(4):325–362, October 1990.

16. K. Nathusius. Grundlagen der Gründungsfinanzierung. Instrumente - Prozesse -
Beispiele. Gabler, Wiesbaden, 2001.

17. H. Wang, J. Mylopoulos, and S. Liao. Intelligent agents and financial risk moni-
toring systems. Comm. of the ACM, pages 83–88, March 2002.

18. X. Wang and Y. Lespérance. Agent-oriented requirements engineering using Con-
Golog and i*. In Working Notes of the Agent-Oriented Information Systems (AOIS-
2001) Workshop, Montreal, QC, May 2001.

84 G. Gans et al.

19. E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, 1995.

20. E. Yu and J. Mylopoulos. Understanding ”why” in software process modelling,
analysis and design. In Proc. of the 16th Int. Conf. on Software Engineering
(ICSE), pages 159–168, Sorrento, Italy, 1994.

Analyzing Multiparty Agreements with Commitments

Feng Wan and Munindar P. Singh

Department of Computer Science,
North Carolina State University,

Raleigh NC 27695, USA

Abstract. Multiparty agreements often arise in a multiagent system where au-
tonomous agents interact with each other to achieve a global goal. Multiparty
agreements are traditionally represented by messaging protocols or event-
condition-action rule sets in which agents exchange messages in a predefined
sequence to ensure both global and local consistencies. However, these models
do not readily incorporate agents’ autonomy and heterogeneity, which limits their
ability to help build a flexible open system. Commitments have been studied for
modelling various agent interactions. This paper introduces commitments as the
key elements in formulating multiparty agreements. Our model focuses on how
agents may negotiate with each other to build a mutual agreement based on their
individual constraints. The actual execution sequence is validated by checking the
compliance of commitment casual relations. Our approach is geared toward con-
structing business processes where agents are mutually constrained in a manner
that preserves their autonomy and heterogeneity.

1 Introduction

In a multiagent system, agents can autonomously decide on whether to perform or not
perform a particular action. When agents coordinate with each other to achieve a global
task, they need to first create a multiparty agreement, that would satisfy global goals as
well as the agents’ individual constraints. Multiparty agreements in agent communities
are more subtle than in other software systems where agreements are represented by
fixed protocols and each party has to follow the same execution sequences. Agents are
able to perceive, reason and act so that they can more freely express themselves and
flexibly interact with each other.

Researchers have studied multiparty agreements from several perspectives, such as
developing FIPA standards [3] for heterogeneous agents to communicate with and un-
derstand each other; implementing domain-specific protocols such as the fish market
and auction protocols; approaches toward building software agents such as designing
AUML [7] and statecharts [5]; developing business processes using BPEL [1]. Existing
approaches define interaction frameworks that limit agents’ choices.

An example scenario is when a buyer wants to buy some goods from a seller. The
buyer may require the seller to ship the goods before he would pay. The seller may
require the buyer to pay before he would ship. Various approaches exist to resolve such
a situation in the real world. For instance, the buyer can make an advance deposit; or
the buyer can give the seller his credit card but the seller will ship the goods before he

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 85–96, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

86 F. Wan and M.P. Singh

charges the card; or the buyer and seller can use an escrow service to ensure successful
execution of all the instructions. In the computer world, the different approaches lead
to different protocols that each software agent must follow. This leads to two questions
of interest. How can the agents derive different protocols to achieve agreement? What
semantics must be incorporated into the agreements?

There is a rich literature on how agents form teams and negotiate on global execution
plans, e.g., [10]. Here we present another idea which starts from the representation of
multiparty agreements based on commitments. Commitments represent the obligations
made between pairs of agents and are used to model interactions in a multiagent sys-
tem. Commitments help agents express promises and monitor each other’s compliance
without regard to internal details. This paper uses commitments as the basic elements
to form multiparty agreements. Next, it detects potential deadlocking constraint depen-
dencies and resolves them by executing selected protocols that are proposed here.

The paper is organized as follows. Section 2 introduces the basic concepts of com-
mitments and their causal relations. Section 3 shows how multiparty agreements can be
represented by commitments. Section 4 describes how to detect and resolve commit-
ment inconsistencies. Section 5 discusses our contributions.

2 Commitments and Causality

A commitment is an obligation from a debtor to a creditor about a particular condition.
For debtor x, creditor y, and condition p, the relevant commitment is notated C(x, y, p)
and is read as “agent x commits to y to bring about p.” There are two kinds of commit-
ments, unconditional and conditional.

– Unconditional commitment. A commitment whose condition is a simple proposi-
tion, such as shipping goods or making payment.

– Conditional commitment. A commitment of the form C(x, y, e → p), where e could
be a condition, an event or another commitment and p is a condition to be brought
about (or an action to be performed). p is activated when e becomes true. An ex-
ample of a conditional commitment is when a customer promises to pay for a trip
only if his travel agent confirms one for him.

Commitments enable agents to express prospective actions while retaining flexibil-
ity about how to respond to unexpected circumstances. This substantially differentiates
them from abstractions such as actions, whose occurrence are more definite and thus
reduce the agents’ flexibility. This paper shows how commitments help model flexible
and sound agreements.

2.1 Commitment Operations

Commitments support several operations that combine to capture mutual and multiparty
scenarios [9]. For the sake of simplicity, this paper is limited to four main operations.
The four operations, create, update, discharge, and cancel, drive the lifecycle of com-
mitments. A commitment is initially created when an agent makes a promise to another
agent. If the commitment has been fulfilled, e.g., the actions involved have been per-
formed or the conditions have become true, then the commitment is discharged. How-
ever, before the commitment is discharged, the agents involved can possibly update the

Analyzing Multiparty Agreements with Commitments 87

DischargedCancelled

Created

Updated

cancel discharge

update

cancel
discharge

update

create

Fig. 1. Commitment life cycle

commitment. The update operation gives flexibility in manipulating agents’ context to
react to any potential requirement changes or exceptions. Agents can also cancel their
commitments, e.g., to accommodate exceptions. However, to cancel a commitment,
agents usually face penalties that compensate for whatever inconsistencies that they
may have introduced. Figure 1 shows the state diagram of the commitment lifecycle.

2.2 Commitment Causality

In previous work [12], we showed that causal relations among commitments are crucial
to understanding the chain of commitment operations because they drive an interaction
along significant states where the real transactions of domain value occur. A commit-
ment causality diagram (CCD) is a graph showing potential causality between each pair
of commitment operations. A CCD highlights the important stages within the informa-
tion flows and hides details of the interaction protocols that can vary depending on
the actual implementation. From a designer’s standpoint, a CCD reflects the high-level
business logic that specifies what agreements should be achieved.

Figure 2 shows a CCD derived based on the following two commitments, in which
a buyer commits to a seller that if the seller commits to ship the goods then the buyer
will pay for it, and the seller commits to the buyer to ship the goods.

C1 = C(buyer, seller, C(seller, buyer, ShipGoods) → Pay)
C2 = C(seller, buyer, ShipGoods)

Each node consists of five elements, namely, the commitment identifier and its as-
sociated four operations: create (Crt), update (Upd), discharge (Dcg) and cancel (Cnl).

88 F. Wan and M.P. Singh

 C1 Crt Upd Dcg Cnl

 C2 Crt Upd Dcg Cnl

Fig. 2. An Example of Commitment Causality Diagram

If an operation of a commitment is causally related to another operation, then there is a
directed edge from the causing operation to the caused operation.

In this example, the creation of commitment C1 causes the creation of commitment
C2 since the buyer promises the seller if the latter ships the goods, then the former will
pay for it. To represent this causal relation, there is an edge from Crt(C1) to Crt(C2).

For the same reason, the creation of C2 causes the discharge of C1 since the seller
promises to ship the goods to the buyer which makes the buyer ready to pay the seller.
This relation is represented by the edge from Crt(C2) to Dcg(C1).

The edge from Upd(C1) to Upd(C2) denotes that the buyer could change his original
condition in C1. For example, he may require that the buyer ship goods by a specific
date. This change may still be acceptable to the seller because he definitely wants to
sell the goods. Therefore the seller will update his commitment C2 and thus keep the
business activity valid.

If any exception arises, such as the buyer deciding to cancel the order or the seller
finding that the goods are out of stock, then either commitment could be cancelled,
which results in the cancellation of the other commitment.

A CCD helps us glue the operations under the same commitments together, which
simplifies the business process modelling. Therefore, the primary goal of our current
approach is to derive a CCD from a business agreement. This inevitably leads to the
development of this paper, which describes how to represent multiparty agreements
using commitments and how to validate the consistency of the agreements and produce
a sound CCD.

3 Representing Multiparty Agreement Using Commitments

Let’s first discuss the basic forms of commitments of relevance to agreements. A mul-
tiparty agreement is expressed by a set of the following four basic commitments. These
commitments are differentiated by the preconditions that need to be satisfied for the
debtor to make a commitment to its creditor.

F1: Unconditional Commitment C(x, y, q).
Agent x commits to y to perform q unconditionally.
For example, C(seller, buyer, ShipGoods).

Analyzing Multiparty Agreements with Commitments 89

F2: Action-Triggered Commitment C(x, y, p → q).
Agent x commits to y to perform q only if p happens.
For example, C(seller, buyer, InStock → ShipGoods).

F3: Unconditional Commitment-Triggered Commitment C(x, y,C(z, x, p) → q).
Agent x commits to y to perform q only if agent z commits to x to perform p.
For example, C(seller, buyer, C(buyer, seller, Pay) → ShipGoods). Here z = y
= buyer.

F4: Conditional Commitment-Triggered Commitment C(x, y,C(z, x, p → r) → q).
Agent x commits to y to perform q only if agent z commits to x to perform r when
p happens. For example,
C(seller, buyer, C(buyer, seller, ShipGoods → Pay) → ShipGoods). Here z =
y = buyer.

Based on the commitment definition described in section 2, we can see that form F1

is an unconditional commitment and form F2, F3 and F4 are conditional commitments.
Classifying conditional commitments into the three forms enable us to study the sub-
tleties of the causal dependencies. For example, the fulfilment of F2 relies on a concrete
action to be performed, but the fulfilment of F3 relies only on a promise that is built
upon the trustiness between the two agents. F4 also relies on promises but is weaker
than F3 since the promise is conditional and may not be fulfilled if the condition does
not hold.

Definition 1. A multiparty agreement A is given by a set of commitments {C1,C2, · · · ,
Cn} where Ciε{F1, F2, F3, F4}

Definition 2. A multiparty agreement is satisfiable if and only if for any C(xi, yi, qi),
qi will eventually become true or is performed; or for any C(xi, yi, pi → qi), qi will
eventually become true or is performed if pi becomes true.

The intuition is that, if the CCD derived from a commitment set has cycles involving
either create or discharge nodes, then the preconditions of the commitments on those
cycles form deadlocking dependencies. This means that no condition would be brought
about, so that the commitment set is not satisfiable. Therefore, we have the following
theorem.

Theorem 1. If the CCD derived from a multiparty agreement shows cycles on its create
or discharge nodes, then the corresponding multiparty agreement is not satisfiable.

3.1 Derivation Rules

Here we give a set of rules to reduce an agreement (or a commitment set) to a set of con-
ditions that all the agents would eventually bring about. The purpose of the deductions
is to show how the interactions progress given a commitment set. This will also give us
a way to detect potentially deadlocking agreements. For simplicity, we do not consider
the cancel and update operations, which usually digress from normal executions and do
not help detecting deadlocks introduced by the original commitment set.

90 F. Wan and M.P. Singh

In the following rules, the notation p
t→ q states that if p happens, then q must

happen within a finite time t. If q does not happen, which means the agent does not
make q true after p becomes true, then we call it a violation of the rule.

E1 : Discharge(C(x, y, q)) ⇒ q

E2 : Discharge(C(x, y, p → q)) ⇒ q

E3 : Create(C(x, y, p)) ⇒ Discharge(C(x, y, p))
E4 : p ∧ Create(C(x, y, p → q)) ⇒ Discharge(C(x, y, p → q))
E5 : Create(C(z, x, p)) ∧ Create(C(x, y,C(z, x, p) → q))

⇒ Discharge(C(x, y,C(z, x, p) → q)) t→ Discharge(C(z, x, p))
E6 : Create(C(z, x, p → r)) ∧ Create(C(x, y,C(z, x, p → r) → q))

⇒ Discharge(C(x, y,C(z, x, p → r)→ q))∧(p t→Discharge(C(z, x, p → r)))

E1 and E2 show that the results of the discharge of both unconditional and con-
ditional commitments are the conditions or actions they bring about; E3 states that an
unconditional commitment will be eventually discharged after it is created. E4 states
that an action-triggered commitment will be discharged after the action occurs; E5

states that an unconditional commitment-triggered commitment will be discharged af-
ter the unconditional commitment is created, and this discharge eventually trigger the
discharge of the unconditional commitment; E6 states that a conditional commitment-
triggered commitment will be discharged after the conditional commitment is created,
and the conditional commitment must be discharged if its condition is satisfied.

3.2 An Example Derivation

Now we can put the two commitments C1 and C2 in section 2.2 into one agreement
A = {C1,C2}. Based on the above rules, we have the following derivation

A −→ Create(C(seller, buyer, ShipGoods)) ∧
Create(C(buyer, seller, C(seller, buyer, ShipGoods) → Pay))

E5−→ Discharge(C(buyer, seller, C(seller, buyer, ShipGoods) → Pay)) t→
Discharge(C(seller, buyer, ShipGoods))

E2−→ Pay
t→ Discharge(C(seller, buyer, ShipGoods))

Pay−→ Discharge(C(seller, buyer, ShipGoods))
E1−→ ShipGoods

By collecting all the actions or conditions on the derivation arrows, which is Pay in
this example, and the results of the derivation, which is ShipGoods, we see that both
actions in the two commitments have been performed, thus we say this agreement is
satisfiable.

Analyzing Multiparty Agreements with Commitments 91

4 Building Satisfiable Agreements

In a multiagent system, each individual agent can have its local constraints. The agents’
commitments not only specify their protocols, but also factor in their local constraints
(which in essence limit what the agents can promise others). However, since the agents
are autonomous, the constraints of different agents may form cyclic dependencies. Let
us return to the example described in the introduction. A buyer wants the seller to ship
the goods first before he makes the payment, but the seller may want the buyer to pay
first before he ships the goods. The two commitments can be expressed as follows.

C1 = C(buyer, seller, ShipGoods → Pay)
C2 = C(seller, buyer, Pay → ShipGoods)

Apparently, neither party will proceed because of the deadlocking dependencies.
Our goal is to detect these cyclic constraint dependencies and propose several protocols
to resolve them and produce a satisfiable commitment set.

4.1 Detecting Unsatisfiable Agreements

Algorithm 1 detects whether an agreement is satisfiable or not. The symbol ∗ refers
to a wildcard that matches any agent or condition. For the sake of simplicity, the con-
dition p and q here are atomic predicates which only serve for specifying constraint
dependencies. In the future, we will extend p and q to compound predicates and derive
the subsumptive relations among these conditions so as to deal with more complicated
business agreements.

By executing this algorithm on the above commitment set, we obtain the following
graph (as shown in Figure 3). Apparently both the create and the discharge paths are
cyclic, which means this commitment set is not satisfiable and cannot be enacted.

 C1 Crt Upd Dcg Cnl

 C2 Crt Upd Dcg Cnl

Fig. 3. A Deadlocking Agreement

4.2 Resolving Agreement Deadlocks

Deadlocking constraints imposed on a group of agents do not mean that these agents can
not engage activities at all. Autonomous agents can negotiate to serve their interests. To
break these deadlocking dependencies, all the agents may choose to commit what they
promise to do for the others regardless of what constraints they impose on the others, or

92 F. Wan and M.P. Singh

1 Draw a node for each commitment with its identifier and two operations, Crt and Dcg;
2 for each commitment Ci do

switch Ci do

3 case C(x, y, p) or C(x, y, ∗ → p)
For any commitment Cj where Cj = C(y, ∗, p → ∗) or
C(y, ∗, C(x, y, p) → ∗), add an edge from Dcg(Ci) to Dcg(Cj);

4 case C(x, y, p → ∗) or C(x, y, C(∗, x, p) → ∗)
For any commitment Cj where Cj = C(∗, x, p) or C(∗, x, ∗ → p), add an
edge from Crt(Ci) to Crt(Cj);

5 case C(x, y, C(∗, x, ∗ → r) → q)
For any commitment Cj where Cj = C(∗, x, ∗ → r), add an edge from
Crt(Ci) to Crt(Cj);

6 In the resulting graph, if there exists at least one cycle in one of the create or discharge
paths, then the commitment set is not satisfiable; otherwise, it is.

Algorithm 1. Detecting Unsatisfiable Agreements

some of the agents may concede to satisfy the others first before their own constraints
are satisfied. All these approaches lead to a variety of protocols for forming satisfiable
multiparty agreements.

For the sake of simplicity, this paper only introduce the protocols that resolve the
constraint conflicts created from the action-triggered commitments (F2). For generality,
we choose a three commitment scenario shown below,

C(x, y, p → q),C(y, z, q → r),C(z, x, r → p)

By applying algorithm 1, we can tell the create and discharge path are cyclic and there
exist deadlocks. The following protocols describe different approaches to resolve this
inconsistency.

2PC Protocol. This protocol is similar to the one widely used in database systems
where task executors either all commit or all abort their transactions to achieve task
atomicity and preserve system consistency [4]. For our research, we apply this protocol
to agents that have deadlocking constraints, which prevents them from discharging any
commitment to each other. The goal of the protocol is to make sure that all the involved
agents commit first before their preconditions are met. Our 2PC protocol only resolves
the cyclic discharge path since, in this scenario, the discharge of one commitment will
satisfy the precondition of another commitment and we can let all the discharges un-
conditionally happen so that all commitments will be fulfilled. Algorithm 2 shows the
steps of the 2PC protocol.

By executing the 2PC protocol, q, r, and p will be unconditionally performed by
x, y, and z, respectively. Once these conditions become true, they also satisfy each
precondition in the above commitments. In terms of this aspect, the 2PC protocols es-
sentially convert all the conditional commitments to their corresponding unconditional

Analyzing Multiparty Agreements with Commitments 93

1 A coordinator tells all the agents that are involved in a cyclic discharge path that a 2PC
protocol is started;

2 Each agent will send yes or no to indicate whether they want to unconditionally discharge
their commitments or not;

3 If all the answers are yes, then the coordinator sends yes to each agent and then each agent
will replace its conditional commitment with a corresponding unconditional commitment
by removing the preconditions;

4 If at least one answer is no, then the coordinator sends no to each agent and an alternative
protocol will be pursued.

Algorithm 2. 2PC Protocol

commitments under all agents’ willingness. Therefore, the above three commitments
become

C(x, y, q),C(y, z, r),C(z, x, p)

An assumption of the 2PC protocol is that, for any commitment C(x, y, p → q), p is
not required to happen before q, but must happen eventually. However, some commit-
ments may require that p happens before q can happen. In this case, when not all the
agents are willing to commit unconditionally, we need to seek other protocols to resolve
the conflicts.

Unconditional Yield. If one agent is willing to convert its conditional commitment
to an unconditional commitment, we say that this agent yields unconditionally. In the
above example, agent x may promise y to perform q without being satisfied by p first.
This usually happens when the debtor of p, which is z in this example, has developed
enough credit with x that makes the latter believe that p will be eventually performed
by z, even after x’s unilateral concession. Here we construct a protocol to convey x’s
intention and propagate it to other agents to make corresponding commitment changes.

1 A coordinator notifies all the agents that are involved in a cyclic discharge path and a
Unconditional Yield protocol is started;

2 Each agent will send yes or no to indicate whether they want to unconditionally discharge
their commitments or not;

3 If at least one agent answers yes, then the coordinator picks the first agent (say agent x)
who answers yes and notify the results to all the agents;

4 The agent x convert its action-triggered commitment (F2) to an unconditional one (F1)
and all other agents will keep their commitments (F2) unchanged.

Algorithm 3. Unconditional Yield Protocol

By executing the protocol on the above example, the 3 commitments are changed to

C(x, y, q), C(y, z, q → r), C(z, x, r → p)

94 F. Wan and M.P. Singh

Agent x will commit q unconditionally to y based on its belief that agent z will eventu-
ally commit p to it if r happens.

Conditional Yield. Conditional yield is similar to unconditional yield, but differs in
that the agent willing to make an unconditional commitment does not have enough
trust in any other agents. It must conditionally rely upon other agents’ promises to it
before it can perform its action. In such a case, the agent will replace its action-triggered
commitment with a conditional commitment-triggered commitment. The protocol is
described as Algorithm 4.

1 A coordinator notifies all the agents that are involved in a cyclic discharge path and a
Conditional Yield protocol is started;

2 Each agent will send yes or no to indicate whether they want to conditionally discharge
their commitments or not;

3 If at least one agent answers yes, then the coordinator picks the first agent (say, agent x)
who answers yes and notify the results to all the agents;

4 The agent x converts its action-triggered commitment (F2) to a conditional commitment
(F4) and all other agents will keep their commitments (F2) unchanged.

Algorithm 4. Conditional Yield Protocol

By executing the protocol on the above example, the 3 commitments are changed to

C(x, y,C(z, x, r → p) → q), C(y, z, q → r), C(z, x, r → p)

Looking back the two conflicting commitments shown in section 4, the Conditional
Yield protocol will produce the following outcome.

C1 = C(buyer, seller, C(seller, buyer, Pay → ShipGoods) → Pay)
C2 = C(seller, buyer, Pay → ShipGoods)

This result shows that the buyer yields to the seller to pay first by taking the promise
from the seller saying if the buyer pays then the seller ships the goods.

To improve efficiencies, in the future work, we will study decentralized protocols
which allow agents to relax their constraints without a centralized coordinator and the
voting processes. In such decentralized settings, we need to consider protocol safeties
to prevent agents who do not have global views of constraints from discharging their
commitments prematurely which may lead to inconsistencies.

5 Discussion

A recent development in teamwork theory [8] presents an idea on forming teams among
heterogeneous agents who have no coordination capabilities in a manner that ensures
robust execution of the teamwork. The authors use a proxy called Teamcore to wrap

Analyzing Multiparty Agreements with Commitments 95

those stand-alone agents with teamwork capabilities so that any type of agents can join
a team and collaborate with others to achieve a global goal. This research differs from
ours in that it searches for passive agents with special capabilities and convert them to
team members, whereas ours is based on active agents who seek services from or do
business with other agents. It is these active agents who decide how to perform a team
task instead of a team organizer who picks agents and imposes behaviours on them.

The research of constraint satisfaction problems (CSP) in distributed systems, e.g.,
[6], has shown much promise. The models behind CSP are computational since the
entire multiagent environment and individual agents are represented by variables, for-
mulae, and constraints, which are made ready to compute based on mathematical rules.
However, these models in most cases require homogeneous agents who sense and act in
exactly the same manner, so they are not suitable for a real business-to-business world
where parties are heterogeneous and loosely coupled. Our approach trades off com-
plexity in the agent models with flexibility of the agents’ behaviors. The outcome of
our problem-solving is a set of satisfiable commitments.

Commitments are widely recognized as the key elements to capture the interactions
among pairs of agents [2]. The essence of the commitments is to create a structure to
specify the obligations that each agent makes to others. By tracking the lifecycles of
these commitments, we are able to monitor agents’ external behaviors and detect any
violation and system inconsistency without knowing the agents’ internal structure [11].
Most researchers emphasize how commitments are fulfilled or whether they are violated
after they have been created, but few have studied whether the commitment can coexist
at the very beginning. This is the aspect studied in this paper. In other words, we develop
a means to detect deadlocking commitments and resolve them to ensure the progress of
agent interactions.

Business-to-business applications are the main motivation for our ideas. By looking
at the existing approaches that model business processes, such as Agent UML (AUML)
[7], Business Process Execution Language (BPEL) [1], or state charts [5], we can ob-
serve that they all impose inflexible protocols in which things must happen in the pre-
defined order in order for a successful business execution. Agents have no chance to
express whether they want to perform tasks differently or not. Commitments enable
agents to tell each other what they are going to do and what conditions that have to be
satisfied to make it happen. All these communications could keep going until a sound
agreement to be made before a single domain-level task is performed. This not only
enables autonomous agents to perform their tasks based on their self interest but also
avoids potential deadlocking system interactions caused by improper assumptions made
by each agent. The goal of our approach is to incorporate commitment concepts into the
above protocol standards and enable an open and flexible environment for various par-
ties doing business.

This paper introduced commitments as the key elements to formulate a multiparty
agreement by which we derive agent interactions, detect potential commitment dead-
locks and resolve these deadlocks. The approach is a natural extension of our recent
work on commitment casual relations where the interaction among business agents can
be modeled by commitments and their causal relations while agent autonomy and het-
erogeneity are still preserved.

96 F. Wan and M.P. Singh

Key future directions include several aspects. One, we will study a decentralized
protocols to resolve commitment deadlocks which eliminates an extra point of fail-
ure caused by the centralized coordinator. Two, during the execution of a multiparty
agreement, new unsatisfiable commitments could be created, so we need an algorithm
to detect them during runtime. Three, we will develop a XML specification for the
commitment based model and incorporate it into the existing BPEL4WS specifications
which enable the agent technology into real B2B applications so as to reveal its concrete
usability.

References

1. BPEL. Business process execution language for web services, version 1.1, May 2003. www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

2. Cristiano Castelfranchi. Commitments: From individual intentions to groups and organiza-
tions. In Proceedings of the International Conference on Multiagent Systems, pages 41–48,
1995.

3. FIPA. FIPA interaction protocol specifications, 2003. FIPA: The Foundation for Intelligent
Physical Agents, http://www.fipa.org/repository/ips.html.

4. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Mateo, 1993.

5. David Harel, Amir Pnueli, Jeanette P. Schmidt, and Rivi Sherman. On the formal seman-
tics of statecharts. In IEEE Symposium on Logic in Computer Science, pages 54–64. IEEE
Computer Society Press, 1987.

6. Jiming Liu, Han Jing, and Y.Y. Tang. Multi-agent oriented constraint satisfaction. Artificial
Intelligence, 136:101–144, 2002.

7. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Extending UML for agents. In
Proceedings of the Agent Oriented Information Systems Workshop at the 17th National Con-
ference on Artificial Intelligence (AAAI), 2000.

8. David V. Pynadath and Milind Tambe. An automated teamwork infrastructure for heteroge-
neous software agents and humans. Journal of Autonomous Agents and Multi-Agent Systems,
7:71–100, 2003.

9. Munindar P. Singh. An ontology for commitments in multiagent systems: Toward a unifica-
tion of normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

10. Milind Tambe. Agent architectures for flexible, practical teamwork. In Proceedings of the
National Conference on Artificial Intelligence, pages 22–28, 1997.

11. Mahadevan Venkatraman and Munindar P. Singh. Verifying compliance with commitment
protocols: Enabling open Web-based multiagent systems. Autonomous Agents and Multi-
Agent Systems, 2(3):217–236, September 1999.

12. Feng Wan and Munindar P. Singh. Commitments and causality for multiagent design. In Pro-
ceedings of the 2nd International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 749–756. ACM Press, July 2003.

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 97 – 109, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Fact-Orientation Meets Agent-Orientation

Terry Halpin

Northface University, Salt Lake City, USA
terry.halpin@northface.edu

Abstract. The pragmatic value of any information system, whether agent-
oriented or not, depends critically on its fidelity in modelling the relevant as-
pects of the underlying business domain. Fact-oriented approaches to informa-
tion modelling facilitate high fidelity models by lifting the specification of busi-
ness facts and rules to a truly conceptual level where they can be easily
validated with non-technical domain experts. Incorporating aspects of fact-
orientation into agent-oriented approaches may well offer similar benefits. This
paper reviews the principal concepts behind fact-orientation, and then discusses
some lessons learned from early attempts to combine fact-orientation with two
agent-oriented approaches.

1 Introduction

In developing an information system to model a practical business domain, one often
encounters business facts that are most easily expressed in terms of n-ary or nested re-
lationships, as well as business rules that that go beyond simple rules like multiplicity
constraints. Adding agent behaviour to an information system extends the range of
business semantics that must be carefully captured. Although business facts and rules
may be implemented in many ways, they should first be specified at the conceptual
level, using concepts and language easily understood by the business domain experts
who are best qualified to validate the rules. These subject matter experts understand
the business domain even if they are unfamiliar with technical notations used by pro-
fessional analysts.

Fact-oriented approaches to information modelling facilitate high fidelity models
by specifying business facts and rules in simplified natural language, using an attrib-
ute-free approach that enables all fact structures to be conveniently populated with
sample populations, thus enabling meaningful validation by non-technical domain ex-
perts. Incorporating aspects of fact-orientation into agent-oriented approaches may
well offer similar benefits. This paper reviews the principal concepts behind fact-
orientation, and then discusses some lessons learned from early attempts to combine
fact-orientation with two agent-oriented methods.

Section 2 briefly overviews basic terminology and language criteria for specifying
business facts and rules. Section 3 illustrates the main concepts and advantages of
fact-orientation for information modelling of non-agent based systems, focusing on
Object-Role Modelling (ORM), currently the most popular fact-oriented approach
used in industry. Section 4 summarizes the main additional modelling tasks addressed

98 T. Halpin

by agent-orientation. Section 5 explores some potential benefits of using ORM in
concert with the Design and Engineering Methodology for Organizations (DEMO).
Section 6 investigates some synergies between ORM and the Agent-Object-
Relationship (AOR) modelling approach. Section 7 reviews the main contributions
and suggests areas for future research.

2 Business Facts and Rules

Underlying any business domain are the facts that the business users communicate to
one another about their business. A fact instance is a proposition taken to be true, and
is expressed by a declarative sentence (e.g. “The Language named ‘Japanese’ is spo-
ken in the Country named ‘Japan’.”), consisting of a predicate symbol (e.g. … is spo-
ken in …) applied to a sequence of one or more object terms (e.g. “The Language
named ‘Japanese’”, “The Country named ‘Japan’”). An object type is a kind of object,
e.g. Language, Country. A fact type includes predicate and object type(s) but not in-
stances, e.g. Language is spoken in Country. A fact-role is a part played by an object in a
predicate. In the context of a predicate, a fact-role is simply called a role. The number
of roles in a predicate is called its arity.

Table 1 shows some fact types with arities from 1 to 4. Each role corresponds to
an object placeholder (depicted here as an ellipsis “…”) in the predicate. Here predi-
cates are displayed in mixfix notation, allowing object terms to be placed in a sentence
at any position.

Table 1. Sample fact types with their predicates expressed in mixfix notation

Fact Type Predicate Arity

Person smokes
Person was born in Country
Person played Sport for Country
Person matched Person to Person on Date

… smokes
… was born in …
… played … for …
… matched … to … on …

1 (Unary)
2 (Binary)
3 (Ternary)
4 (Quaternary)

Business rules come in many varieties and may be specified using graphical and/or
textual languages. A static business rule is a constraint or derivation rule that applies
to each individual state of the business, taken one state at a time. For example, Each
Person was born on at most one Date is a static constraint. A derivation rule may define a
derived fact type (e.g. Person1 is an uncle of Person2 iff Person1 is a brother of Person3 who is a
parent of Person2), or a derived object type (e.g. Each MalePerson is a Person who is of Gender
‘M’). A dynamic business rule is a transition constraint that restricts how the business
may change to new states (e.g. MaritalStatus may change from ‘married’ only to ‘divorced’ or
‘widowed’). One kind of dynamic constraint common in agent-based systems is a reac-
tion rule, which determines how the business reacts to an event in the presence of
some condition—we discuss reaction rules fin more detail later.

Regardless of their kind, all business rules ultimately depend on business facts and
are best applied to a fact model that identifies the fact types of interest to the business.
Ideally, fact and rule analysis is a joint activity between the domain expert, who best

 Fact-Orientation Meets Agent-Orientation 99

understands the business domain, and the modeller, whose main task is to elicit and
formalize the domain expert’s informal knowledge. To optimize communication be-
tween the modeller and the domain expert, the facts and rules should be verbalized in
an unambiguous version of the domain expert’s natural language and backed up with
sample fact populations (for static rules) and sample transitions (for dynamic rules).

In designing a textual language to express business rules, we adopted the following
criteria: expressibility, clarity, flexibility, localizability and formality [8, 11]. Support-
ing predicates of any arity allows domain experts to verbalize the rules directly in
terms of the way they think. This makes it much easier for them to understand and
validate the rules. There is no excuse for imposing on the domain experts a binary
straightjacket that forces them to recast a fact type they would normally verbalize as a
quaternary in terms of a binarized equivalent. Similarly, we should not force domain
experts to recast unary facts such as Country ‘US’ is large in terms of Boolean attribute as-
signments (e.g. US : Country.isLarge = True).

Once we accept that predicates of any arity must be supported, using natural ver-
balizations, it follows that mixfix notation must be supported. In Table 1, the ternary
and quaternary predicates require mixfix because they have more than two object
placeholders. Although prefix or postfix notation could be used, such as PlayedFor(X, Y,
Z), this would be unnatural for non-technical people. Localizability also requires mix-
fix notation since, even for binary predicates, the verb-phrase need not occur in the in-
fix position. For example, verbs are usually placed last in Japanese.

Since rules build on facts, mixfix notation is also desirable for business rules (e.g. It
is forbidden that the same Room at the same HourSlot is booked for more than one Activity). Like
most business rules, this example is deontic in its modality. A typical business model
also includes some alethic rules (e.g. It is impossible that some Person is a parent of itself).

A decade ago, we specified a verbalizer component that is currently implemented
in a database modelling tool [12]. The verbalizer automatically translates ORM
graphical constraints into English, as well as Japanese, German and French in the lo-
calized versions. In later work [2], we co-designed a conceptual query language called
ConQuer, that allows any first order rule to be expressed naturally in terms of an
ORM schema, with automatic transformation to SQL. Currently, we are extending
these language efforts to provide a unified language that is suitable for very high level
specification of business models and business queries at the conceptual level.

Based on our industrial modelling experience, we found the following dimensions
to be pragmatically useful in characterizing ways in which business rules may be tex-
tually formulated for validation with domain experts: form (positive, negative, de-
fault); modality (alethic, deontic), style (relational, attribute, mixed); context (local,
global); formality (informal, semi-formal, formal). For a detailed discussion, see [11].

An informal verbalization of business rules may be useful, if it is unambiguous to
the domain expert who has to validate the rules. The RuleSpeak sentence templates
[19] provide one way to do this. To exploit the benefits of model-driven development
however, business rules should be expressed in a formal language, so that they can be
automatically transformed into executable code. The Object Constraint Language
(OCL 2) provides a formal rule language, but its syntax is far too mathematical in na-
ture for non-technical users [17, 23].

A few commercial tools allow querying directly in unrestricted English, and then
translate the queries into database languages such SQL or MDX (e.g. Microsoft

100 T. Halpin

English Query and English Language Frontend (ELF)). However, such tools typically
require extensive, technical set up of access paths (e.g. pre-joins) for any non-trivial
access (e.g. joins that are not based on FK to PK relationships).

The Object-oriented Systems Analysis (OSA) model [4, 5] supports high level, in-
formal rules as well as formal rules in a predicate calculus notation. Our ORM-based
approach instead uses a single language that is both formal and conceptual, so that it
can serve for communication and validation with domain experts, as well as being ex-
ecutable. In its English version, our textual rule language bears many similarities in
both design goals and scope to Sowa’s current work on Common Logic Controlled
English [21], though we believe our syntax is easier for non-technical people to mas-
ter and understand (e.g. support for pronouns, natural definite description schemes
and a wide variety of pre-defined constraint types).

Regardless of which syntax is finally chosen, industrial experience with the use of
very high level rule specification for validating fact-oriented business models with
domain experts strongly suggests that any effort made to raise the level of agent-based
rules to the same level will be amply rewarded by higher fidelity rules.

3 Object-Role Modelling

Unlike the Entity Relationship (ER) and Unified Modeling Language (UML) [16, 18,
22] approaches, fact-oriented approaches depict all facts as relationships over one or
more objects, rather than wrapping some facts up as attributes of other objects. This
attribute-free approach enables facts, fact types and rules to be verbalized naturally,
and enables all fact structures to be easily populated with concrete examples to assist
validation. This attribute-free nature also dramatically improves the semantic stability
of both the information model and queries based on it, since typical changes that add
fact types or modify rules have no impact on the semantics of existing paths through
the schema [2], as illustrated by an example at the end of this section. While avoiding
attributes leads to less compact models, this apparent disadvantage is immediately
removed by allowing attribute-based views as derived models, together with the use
of role names to allow attribute-style specification of rules when desired.

Object-Role Modelling (ORM) is currently the main exemplar of the fact-oriented
approach to information modelling. Other fact-oriented approaches exist, including
Natural-language Information Analysis Method (NIAM) [24], Fully-Communication-
Oriented Information Modelling (FCO-IM) [1], the Predicator Set Model (PSM) [15]
and OSA, but their current industrial adoption lags behind ORM. For such reasons,
we now focus our treatment of fact-orientation on ORM. This section provides a brief
overview of some of the main concepts and notations underlying the use of ORM for
non-agent based approaches. Other sources on ORM provide a detailed summary [7],
a thorough treatment [8] and a comparison with ER and UML [9, 10].

ORM includes both a graphical and a textual language for specifying information
models, a set of modelling procedures for using these languages to construct models,
a suite of transformations for reshaping schemas into equivalent or implied schemas, a
set of algorithms and heuristics for mapping ORM schemas to/from low level sche-
mas (e.g. relational database schemas, UML schemas, XML schemas), and a textual
language for specifying queries directly on ORM models and mapping these to SQL.

 Fact-Orientation Meets Agent-Orientation 101

ORM’s graphical language for static constraints is far more expressive than that of
industrial ER or UML, and is formally grounded in first order logic plus arithmetic
and set and bag comprehension. A sample ORM schema and sample fact population
is shown in Figure 1.

Movie
(Nr)

Person
(Name)

ir

is based on

was reviewed by / reviewed

was directed by / directed

is banned

[director]

1 Ron Howard
2 Ron Howard
3 Peter Faiman

1 Peter Faiman
1 Ann Green
2 Ann Green

Sex
(Code)

is of

{ 'M',
 'F' }

4 1
4 2
3 2

4
5 Ann Green F

Peter Faiman M
Ron Howard M

Fig. 1. Sample ORM schema plus fact population

The ORM model in Figure 1 includes three object types (Movie, Person and Sex) and
five fact types: Movie is banned; Movie is based on Movie; Movie was directed by Person; Movie
was reviewed by Person; Person is of Sex. Inverse readings are supplied for two associa-
tions: Person directed Movie; Person reviewed Movie. One role is named (“director”). Simple
identification schemes may be abbreviated in parentheses. For example, Movie(Nr) ab-
breviates the injective (1:1 into) association Movie has MovieNr. For simplicity, persons
in this domain are identified by name. In this example, all fact types are unary or bi-
nary. We could add Movie was released in Country in Year as a ternary fact type.

ORM classifies business rules into constraints and derivation rules. The ORM
model in Figure 1 includes constraints but no derivations. The value constraint {‘M’,
‘F’} indicates the possible sex codes. Arrow-tipped lines across one or more roles de-
note uniqueness constraints, indicating that instantiations of that role sequence must
be unique. For example, the uniqueness constraint on the first role of Person is of Sex
indicates that entries in the fact column for that role must be unique. The English ver-
sion of ORM’s formal textual language verbalizes this constraint as: Each Person is of at
most one Sex.

A solid dot (possibly circled) connected to a set of one or more roles denotes a
mandatory constraint over that role set. For example, the mandatory dot connected to
the first role of Person is of Sex indicates that Each Person is of some Sex. The mandatory
dot connected to the other two roles played by Person depicts an inclusive-or con-
straint: Each Person directed some Movie or reviewed some Movie (possibly both).

102 T. Halpin

The Oir symbol connected to the roles of the fact type Movie is based on Movie denotes
the irreflexive ring constraint: no Movie is based on itself. The circled subset symbol “⊆”
connected by an arrow from the first role of Movie was reviewed by Person to the first role
of Movie was directed by Person denotes a subset constraint, indicating that the population
of the first role must always be a subset of the population of the second role. In Eng-
lish: Each Movie that was reviewed by some Person also was directed by some Person.

A subset constraint is one kind of set-comparison constraint. In general a set-
comparison constraint applies across sequences of compatible role sequences (of one
or more roles). Other varieties of set-comparison constraints are exclusion and equal-
ity constraints. For example, the circled “X” in Figure 1 denotes an eXclusion con-
straint between the role-pairs that comprise the direction and review predicates. In
English: No Movie was directed by and reviewed by the same Person.

Because base models in ORM eschew the use of attributes, they are immune to
changes that reshape attributes as entity types or relationships, an all too common ex-
perience with ER and UML. Note also that the meaning of a query is unchanged if we
change a constraint or add a new fact type. ORM queries respect this principle and are
thus immune to most changes caused by schema evolution. In contrast, attribute-based
approaches such as ER, UML and XML may require existing attributes to be remod-
elled as well as existing queries/rules based on them.

For example, Figure 2(a) shows a simple ORM schema, as well as an ORM query
(expressed in ConQuer) to list the title and gender of those people who have titles.
The dotted ellipse indicates that Title instances are lexical (e.g. character strings), so
identify themselves. In ConQuer, projecting on an object type is denoted by “ ”. Fig-
ure 2(b) shows an equivalent schema in UML (minus the constraint that social secu-
rity numbers are unique, since UML has no official graphic notation for unique attrib-
utes), together with the query expressed in an attribute-based language (in this case,
SQL). The SQL query is harder for a non-technical person to understand, but at least
it works.

Fig. 2. Original schema and query in (a) ORM and ConQuer, and (b) UML and SQL

 Fact-Orientation Meets Agent-Orientation 103

Now suppose that we modify the business domain to allow more than one title to
be recorded for the same person and, moreover, the order in which these titles are
listed is significant. For example, Prof. Dr. Zweistein may demand to be called that
instead of “Dr. Prof. Zweistein”. The modified schemas and queries to deal with these
changes are shown in Figure 3.

Fig. 3. Modified schemas and queries in (a) ORM and ConQuer, and (b) UML and SQL

First note that the change to the ORM schema is trivial. The semantics of the origi-
nal path connecting Person to gender and title is unchanged (only a constraint is
changed). In contrast, the UML schema had to be drastically modified, because we
can’t record facts about a title if a title is a merely an attribute. More importantly, the
ORM query still works without change, since the meaning of the query is unchanged.
Unfortunately, the SQL query also had to be drastically modified since the relational
database now contains three tables instead of one, with the relevant information
spread over two tables, thus requiring either a join or subquery. The current ORM tool
implementing ConQuer automatically generates the new SQL without the user having
to change the original ORM query. The benefit of greater semantic stability conferred
by the attribute-free approach of fact-orientation should now be apparent.

ORM provides additional advantages over ER and UML such as full orthogonality,
cleaner semantics and richer coverage of predefined constraints [9, 10, 13]. Unlike
UML however, ORM currently has no pre-defined support for agent-based aspects,
since ORM’s focus is on information modelling rather than behavioural modelling.
The next section briefly reviews some of the additional modelling tasks required for
agent-based systems.

4 What Does Agent-Orientation Add to the Modelling Task?

Following Ferber [6], we define an agent to be a physical or virtual entity with ca-
pacities such as the following. An agent is capable of acting (and reacting) in an envi-
ronment, communicating with other agents, exhibiting goal-directed behaviour (sur-
vival or satisfaction), has resources of its own, has limited perception of its

104 T. Halpin

environment and can offer services. A multi-agent system includes an environment
containing passive objects as well as active objects (agents), where objects may bear
relationships to one another and agents may perform operations to perceive, produce,
consume, manipulate or transform objects, in conformity to certain rules.

Many of these features seem to be found in modelling approaches (data flow dia-
grams, process modelling etc.) that have been used for decades to deal with building
distributed/federated databases and real-time systems. To deal with such features at
the conceptual level, a minimum requirement is to be able to model the following two
aspects at a high level: inter-agent interaction; and intra-agent states (of relevance).

Inter-agent interaction may include communication between agents (information
flow) and/or physical acts on one another (material flow), subject to business rules
that constrain such interactions (e.g. reaction rules). Intra-agent states may include
obligation and commitment stores accrued from communication acts, as well as be-
lief-sets. For modelling the latter, we favour classical logic with belief revision rather
than non-monotonic logic, and prefer a stronger emphasis on the intended proposi-
tions rather than sentences whose utterances are often time-deictic.

Dozens of modelling approaches have been proposed to deal with agent-based fea-
tures. The next two sections briefly review some results from preliminary investiga-
tions to explore possible synergies between ORM and two such approaches.

5 ORM and DEMO

The Design and Engineering Methodology for Organizations (DEMO) was largely
developed by Jan Dietz [3]. It adds performatives (e.g. request, promise, question, as-
sertion) to propositions to model communication acts, and uses four models to capture
essential business processes. The state model is similar to a simplified version of
ORM, covering object types, fact types and associated business rules. The operation
model considers action and decision rules for actor roles. The process model considers
coordination steps as well as causal relationships. The construction model focuses on
actor roles, transactions and information sources.

Figure 4 depicts part of a state model in DEMO for a simple library. The additional
DEMO models needed to complete the business specification may be found in [3].
While DEMO’s state model is similar to an ORM model in many ways, there are dif-
ferences in both notational style and semantic coverage. For example, DEMO some-
times uses diamonds to depict predicates. More importantly, DEMO attempts to ig-
nore all information aspects relating to how individual entity types may be identified,
since decisions about identification schemes are considered to be irrelevant to the es-
sential business processes underlying the business domain. For example, how a book
or a library loan is referred to in actual discourse is not captured at all.

In contrast, ORM requires modelling of at least one way by which humans may
linguistically identify objects in the business domain. In practice, this requirement of-
ten avoids many modelling errors, while still allowing final decisions about identifica-
tion schemes to be delayed until the business wants to make recommendations in this
regard. A partial ORM model for the same library domain is shown in Figure 5. Pre-
pending “<<” to a predicate reverses its reading direction (the default is left-right, top-
down). Business rules are specified using ORM’s graphical and textual languages.

 Fact-Orientation Meets Agent-Orientation 105

Fig. 4. Part of a state model for a library domain, expressed in DEMO

Fig. 5. Part of an ORM model for the library domain

106 T. Halpin

The other ORM models to fully specify the information content of the library do-
main may be found in [3]. In contrast to DEMO models, ORM models are formal and
executable, they include identification schemes, they typically capture many more
constraints, they support formal derivation rules and they declare all temporal aspects
explicitly (including temporal granularity). In addition, ORM provides detailed mod-
elling procedures for creating and validating models (e.g. data use case seeding, vali-
dation by verbalization and population), as well as transformations for code genera-
tion. Such added precision and coverage provide possible benefits for combining
ORM with an approach such as DEMO and possibly other agent-based approaches.
Possible benefits from DEMO for ORM include a clearer distinction between the
business system and the automated information system, explicit modelling of com-
munication acts and transactions, and integration of static and dynamic viewpoints.

6 ORM and AOR

As indicated earlier, ORM has little support for modelling reactive behaviour (e.g.
dynamic constraints and reaction rules) and no pre-defined support for agent-based
aspects. In contrast, the Agent-Object-Relationship (AOR) approach, developed by
Gerd Wagner, provides built-in modelling primitives (e.g. agent and event types) to
deal with agent-based aspects [22].

An interaction process type in AOR is specified by defining, for each participating
agent (type), a set of inter-related behaviour rules, called reaction rules. A reaction
rule has four parts: event; condition; action; and postcondition. To explore the impact
of such features, some AOR concepts were adapted to ORM [14]. For example, enti-
ties were partitioned into passive entities and agents, and interaction diagrams were
added to display ordered collections of lexical actions (message communication)
and non-lexical actions (physical). Consider the following reaction rule, expressed
informally.

When a library receives a book request from a member, it checks whether a copy
of that book is available and, if so, the request is confirmed, a new loan object is
created and a copy of the book is delivered to the faculty member.

Each loan is for exactly one book copy. The rule does not specify time limits for
the actions to take place, so it is not an operational rule. Figure 6 shows an interaction
diagram for this reaction rule, using an extended ORM notation that adapts concepts
from AOR. Member1 and BookCopy1 are individual object variables, and theLibrary
is an external unit type (there is exactly one library that exists external to the informa-
tion model itself). Member is an agent type, whereas BookCopy is a passive entity
type. RequestBook is a message type performed by Member1 and perceived by theLi-
brary. ConfirmRequest is a message type performed by the Library and perceived by
Member1. These lexical actions are named inside dashed arrow heads. Physical ac-
tions are named inside solid arrowheads. TheLibrary performs the DeliverBookCopy
action, as perceived by Member1, with BookCopy1 passively involved. Member1 per-
forms the ReturnBookCopy action, as perceived by theLibrary, with BookCopy1 pas-
sively involved. The order of these actions is indicated by numbered circles.

 Fact-Orientation Meets Agent-Orientation 107

Fig. 6. An interaction sequence diagram in ORM-AOR notation for library loans

The graphical part of the ORM schema for the underlying library domain is shown
in Figure 7. For simplicity, all textual constraints and derivation rules are omitted.

Fig. 7. Graphical part of the ORM schema for the library domain underlying the reaction rule

The temporal order inherent in the interaction model (Figure 6) and reaction rule is
captured by subset constraints in either explicit (circled “⊆”) or implicit form (e.g.
implied by mandatory constraint). For example, a book request is confirmed only if it

BookRequest
(Nr)

BookCopy
(Barcode)

was reserved for / reservedis available *

Instant
(dhm)

was made at1

Instant
(dhm)

<< was available at * obtained reservation at

=

Member
(Nr)

was made by

Book
(ISBN)

CopyNr

u has
/ is of

is of
/ has

<< is for

is confirmed

Loan
(Nr)

<< is of *

fulfills / is fulfilled by

=
⊆

Instant
(dhm)

began at

was delivered

was returned at

⊆

108 T. Halpin

rule verbalizations. Such dynamic specifications may be used in conjunction with data
use cases to seed ORM models.

7 Conclusion

The main aim of this paper was to encourage researchers from the agent-oriented
community who may be unfamiliar with fact-orientation to explore possible synergies
between fact- and agent-oriented approaches.

To optimally exploit both fact-oriented and agent-oriented approaches, several re-
search questions need to be addressed, such as the following. What is an appropriate
metamodel for capturing relevant communication acts (including illocutionary forces
over propositions)? To what extent can corresponding features of dynamic and static
models be automatically transformed into one another? What formal logics are best
for capturing the dynamic and language-act semantics of social interactions? Business
processes may be manual, automated or semi-automated, and initially we might not
know which is best. Do we need an agent classification scheme to cater for this (e.g.
human, machine, semi-automated, undecided?).

Many dynamic rules are easy to specify at the instant they are fired in response to a
causal event, but become much more complex if history is kept and the rules may be
fired at any time after (e.g. to perform a derivation or apply a constraint). What is the
best specification language to handle such temporal aspects of rules?

Work has recently begun on a new version of ORM (tentatively named ORM 2),
that extends its semantic coverage, refines its notation to be more compact, consistent
and localizable, and provides richer support for textual specification of business mod-
els and queries at the conceptual level. As part of this effort, which includes tool sup-
port and code generation, further opportunities for incorporating features from agent-
based and workflow approaches will be explored.

References

1. Bakema G.P., Zwart J., Lek H van der: Fully Communication Oriented NIAM. In: Nijssen
G., Sharp J (eds.): NIAM-ISDM 1994 Conference Working papers, Albuquerque, NM
USA, (1994) pp L1-35.

2. Bloesch, A; Halpin, T.: Conceptual queries using ConQuer-II. In: Embley, D.; Goldstein,
R. (eds.): Proc. 16th Int. Conf. on Conceptual Modeling ER'97. Lecture Notes in Com-
puter Science, vol. 1331. Springer-Verlag, Berlin Heidelberg New York (1997) 113-126.
Online at www.orm.net/pdf/ER97-final.pdf.

3. Dietz, J., Halpin, T.:.Using DEMO and ORM in Concert: A Case Study. In: Siau, K. (ed.)
Advanced Topics in Database Research, vol. 3, Idea Publishing Group, Hershey PA,
(2004) 218-236.

4. Embley, D.; Kurtz, B.; Woodfield, S.: Object-Oriented Systems Analysis: A Model-
Driven Approach. Prentice Hall, Englewood Cliffs, NJ (1992).

5. Embley, D.: Object Database Management. Addison-Wesley, Reading, MA (1998).
6. Ferber, J.: Multi-Agent Systems. Addison-Wesley, Edinburgh Gate (1999).

is fulfilled by a loan. Although temporal order may be modelled in ORM using man-
datory, subset, equality or subtype constraints, the corresponding dynamic processes
are typically easier to understand and validate using interaction diagrams and reaction

 Fact-Orientation Meets Agent-Orientation 109

7. Halpin, T.: Object-Role Modeling (ORM/NIAM). In: Bernus, P., Mertins, K, Schmidt, G.
(eds.) Handbook on Architectures of Information Systems. Springer, Heidelberg (1998)
81-102.

8. Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San
Francisco (2001).

9. Halpin, T.: Information Analysis in UML and ORM: a Comparison. In: Siau, K (ed.): Ad-
vanced Topics in Database Research, vol. 1, Idea Publishing Group, Hershey PA (2002)
307-323.

10. Halpin, T.: Metaschemas for ER, ORM and UML Data Models: A Comparison. In: Siau,
K (ed.): Journal of Database Management, vol. 13, no. 2 (2002) 20-29, Idea Publishing
Group.

11. Halpin, T.: Business Rule Verbalization. In: Doroshenko, A., Halpin, T., Liddle, S., Mayr,
H. (eds.): Information Systems Technology and its Applications. Lecture Notes in Infor-
matics, vol. P-48. Gesellschaft für Informatik, Bonn (2004) 39-52.

12. Halpin, T.; Evans, K.; Hallock, P.; MacLean, W.: Database Modeling with Microsoft®
Visio for Enterprise Architects. Morgan Kaufmann, San Francisco (2003).

13. Halpin, T.: Constraints on Conceptual Join Paths. In: Krogstie, J.; Halpin, T.; Siau, K.
(eds.): Information Modeling Methods and Methodologies, Idea Publishing Group, Her-
shey (2004) 258-277.

14. Halpin, T.; Wagner, G.: Modeling Reactive Behavior in ORM. In: Conceptual Modeling –
ER2003, Proc. 22nd ER Conference, Chicago, Springer LNCS (2003).

15. Hofstede, A. ter, Proper H., Weide th P. van der: Formal definition of a conceptual lan-
guage for the description and manipulation of information models. Information Systems
18:7 (1993) 489-523.

16. Object Management Group: UML 2.0 Infrastructure Specification. Online at:
www.omg.org/uml (2003).

17. Object Management Group: UML 2.0 Object Constraint Language. Online at:
www.omg.org/uml (2003).

18. Object Management Group: UML 2.0 Superstructure Specification. Online at:
www.omg.org/uml (2003).

19. Ross, R.; Lam, G.: RuleSpeak Sentence Templates: Developing Rules Statements Using
Sentence Patterns. Business Rule Solutions. Online at www.BRCommunity.com (2001).

20. Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference Man-
ual. Addison-Wesley (1999).

21. Sowa, J. Common Logic Controlled English. Draft paper online at
http://www.jfsowa.com/clce/specs.htm (2004).

22. G. Wagner: The Agent-Object-Relationship Meta-Model: Towards a Unified View of
State and Behavior. Information Systems 28:5 (2003) 475-504.

23. Warmer, J.; Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA, Second Edition. Addison-Wesley (2003).

24. Wintraecken, J.: The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer (1990).

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 110 – 124, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards Ontological Foundations for Agent Modelling
Concepts Using the Unified Fundational Ontology (UFO)

Giancarlo Guizzardi1 and Gerd Wagner2

1 Centre for Telematics and Information Technology, Univ. of Twente,
Enschede, The Netherlands

guizzard@cs.utwente.nl
2 Brandenburg Univ. of Technology at Cottbus, Computer Science Department,

Cottbus, Germany
G.Wagner@tu-cottbus.de

Abstract. Foundational ontologies provide the basic concepts upon which any
domain-specific ontology is built. This paper presents a new foundational
ontology, UFO, and shows how it can be used as a foundation of agent concepts
and for evaluating agent-oriented modelling methods. UFO is derived from a
synthesis of two other foundational ontologies, GFO/GOL and
OntoClean/DOLCE. While their main areas of application are the natural
sciences and linguistics/cognitive engineering, respectively, the main purpose
of UFO is to provide a foundation for conceptual modelling, including agent-
oriented modelling.

1 Introduction

A foundational ontology, sometimes also called an‘upper level ontology’, defines a
range of top-level domain-independent ontological categories, which form a general
foundation for more elaborated domain-specific ontologies. A well-known example of
a foundational ontology is the Bunge-Wand-Weber (BWW) ontology proposed by
Wand and Weber in a series of articles (e.g., [28,29,30]) on the basis of the original
metaphysical theory developed by Bunge [1,2].

As has been shown in a number of recent works (e.g., [31,8,5,10,11,20]),
foundational ontologies can be used to evaluate conceptual modelling languages and
to develop guidelines for their use. Agent-based conceptual modelling can be viewed
as an extension of more traditional conceptual modelling approaches by the explicit
consideration of intentional entities. The position defended here is that agent
modelling languages should also be based in a foundational ontology that accounts for
both the concepts underlying basic conceptual modelling constructs, and their
extension in terms of intentional entities.

A unified foundational ontology represents a synthesis of a selection of
foundational ontologies. Our main goal in making such a synthesis is to obtain a
foundational ontology that is tailored towards applications in conceptual modelling.
For this purpose we have to capture the ontological categories underlying natural
language and human cognition, which are also reflected in conceptual modelling

 Towards Ontological Foundations for Agent Modelling Concepts Using the UFO 111

languages such as ER diagrams or UML class diagrams. In [6], this approach is called
a ‘descriptive ontology’ as opposed to ‘prescriptive ontology’, which claims to be
‘realistic’ and robust against the state of the art in scientific knowledge.

For UFO 0.2, the second1 (still experimental) version of our Unified Foundational
Ontology (UFO), we combine the following two ontologies:

1. the General Formal Ontology (GFO), which is underlying the General
Ontological Language (GOL) developed by the OntoMed research group at the
University of Leipzig, Germany; see www.ontomed.de and [4];

2. the OntoClean ontology [32] and the Descriptive Ontology for Linguistic and
Cognitive Engineering (DOLCE) developed by the ISTC-CNR-LOA research
group in Trento, Italy, as part of WonderWeb Project; see
http://wonderweb.semanticweb.org/.

Our choice is based on personal familiarity and preferences and not on an
evaluation of all alternatives. Nonetheless, in previous attempts, GFO has been
proven insightful in providing a principled foundation for analyzing and extending
conceptual modelling and ontology representation languages and constructs
[10,11,19].

We have obtained our synthesis by:

1. selecting categories from the union of both category sets,
2. renaming certain terms in order to create a more ‘natural’ language, and
3. adding some additional categories and corresponding theories,

based on relevance for conceptual modelling according to our experience.
Using the acronyms “BWW”, “owl”, “UML”, “ISO”, and “BSBR”, we also make

references to BWW, the Web ontology language OWL2, the Unified Modelling
Language (UML), the terminology standard ISO1087-1:2000 [17], and to the
Business Rules Team submission to the OMG Business Semantics for Business Rules
RFP [3]. For making a distinction between terms used differently in different
vocabularies, we use the XML namespace prefix syntax and write, e.g.,
“BWW:thing” and “owl:Thing” for distinguishing between the concepts termed
“thing” in BWW and in OWL.

We present UFO 0.2 both as a MOF/UML model [21] and as a vocabulary in semi-
structured English, similar to the BSBR Structured English of [3]. MOF/UML is a
fragment of the UML class modelling language that is recommended by the OMG as
a language for defining modelling languages; in other words, MOF/UML is used as a
meta-modelling language. There are two reasons for using MOF/UML for defining a
foundational ontology: first, it allows expressing it graphically in the form of a UML
class diagram; second, it facilitates the communication of the foundational ontology
by making it accessible to the large (and still growing) language community of people
familiar with the UML.

1 UFO 0.2 differs from UFO 0.1, which has been presented at the AOIS Workshop at

CAiSE’04, by adding the categories of datatype, process and business process.
2 http://www.w3.org/TR/owl-semantics/.

112 G. Guizzardi and G. Wagner

An alternative, and more flexible, mode of expression for defining a modelling
language such as UFO consists of using semi-structured English to specify the
vocabulary of the modelling language. Our UFO vocabulary has three kinds of entries
marked up with different font styles:

• term : a term in this font style denotes being of a type and is used to refer to
things of that type; e.g., the term individual in the phrase “individual that is
wholly present whenever it is present” stands for a thing of type “individual” (i.e.
it stands for an individual);

• name : a name of an individual or a type; when abc is a type term referring to
things of that type, abc is a name referring to the type itself;

• term1 relationship predicate term2 : an expression that denotes being of a
relationship type and that is used to refer to relationships of that type.

A vocabulary entry may contain, additionally,

• ‘Corresponding terms’ (or ‘corresponding relationship type expressions’): terms
(or relationship type expressions) that are roughly equivalent;

• Examples; and
• Constraints: logical statements that have to hold in any given ontology based on

UFO 0.2.

When there is a primary source for a definition, we append it in brackets, like
[based on GFO].

UFO is divided into three incrementally layered compliance sets:

1. UFO-A defines the core of UFO, excluding terms related to perdurants and terms
related to the spheres of intentional and social things;

2. UFO-B defines, as an increment to UFO-A, terms related to perdurants; and
3. UFO-C defines, as an increment to UFO-B, terms related to the spheres of

intentional and social things, including linguistic things.

This division reflects a certain stratification of our “world”. It also reflects different
degrees of scientific consensus: there is more consensus about the ontology of
endurants than about the ontology of perdurants, and there is more consensus about
the ontology of perdurants than about the ontology of intentional and social things.

We hope that this division into different compliance sets will facilitate both the
further evolution of UFO and the adoption of UFO in conceptual modelling and
ontology engineering. In the next section we present UFO-A 0.2, while UFO-B 0.2
and UFO-C 0.2 are presented in sections 3 and 4, respectively.

2 UFO-A 0.1 – The Core of a Unified Foundational Ontology

2.1 Things, Sets, Entities, Individuals and Types

We first present the upper part of UFO-A 0.2 as a MOF/UML model in Fig. 1. Notice
the fundamental distinction made between sets and entities as things that are not sets
(called ‘urelements’ in GFO).

 Towards Ontological Foundations for Agent Modelling Concepts Using the UFO 113

Fig. 1. The upper part of UFO 0.2 as a MOF/UML model

In structured English, the upper part of UFO 0.2 can be introduced as follows.

thing: anything perceivable or conceivable [ISO:object]. Corresponding terms:
GFO:entity; DOLCE:entity, owl:Thing; BSBR:thing

set : thing that has other things as members (in the sense of set theory)

thing is member of set : name of a formal relationship type that is irreflexive,
asymmetric and intransitive

member : role name that refers to the first argument of the thing is member of set
relationship type

set is subset of set : name of a formal relationship type that is reflexive, asymmetric
and transitive. Constraint: For all t:thing; s1, s2 : set – if t is member of s1 and s1
is subset of s2, then t is member of s2

entity: thing that is not a set; neither the set-theoretic membership relation nor the
subset relation can unfold the internal structure of an entity [GFO:urelement]

entity type : entity that has an extension (being a set of entitys that are instances of
it) and an intension, which includes an applicability criterion3 for determining if
an entity is an instance of it; and which is captured by means of an axiomatic
specification, i.e., a set of axioms that may involve a number of other entity types
representing its essential features. An entity type is a space-time independent
pattern of features, which can be realized in a number of different individuals.
[based on GFO:universal]. Corresponding terms: UML:class; DOLCE:universal;
owl:Class; BSBR:’generic thing’

entity is instance of entity type : name of a formal relationship type (called
classification)

instance : role name that refers to the first argument of the entity is instance of entity
type relationship type

3 The notion of applicability criterion (or principle of application) and its role in conceptual

modelling are discussed comprehensively in (Guizzardi et al, 2004).

114 G. Guizzardi and G. Wagner

set is extension of entity type : name of a formal relationship type. Constraint: For
all e:entity, t:entity type, s:set – if e is instance of t and s is extension of t, then e
is member of s.

extension : role name that refers to the first argument of the set is extension of entity
type relationship type

entity type is subtype of entity type : name of a formal relationship type that is
irreflexive, asymmetric and transitive (also called generalization). Constraint:
For all t1, t2 : entity type; s1, s2 : set – if t1 is subtype of t2 and s1 is extension of t1

and s2 is extension of t2, then s1 is subset of s2.

subtype : role name that refers to the first argument of the entity type is subtype of
entity type relationship type

individual : entity that is not an entity type. An entity type that classifies individuals
is called individual type. Corresponding terms: GFO:individual; DOLCE:
particular.

thing is part of individual : name of a formal relationship type that is reflexive,
asymmetric and transitive (also called aggregation). For a fuller treatment of
part-whole relations in which we consider both modality and context-sensitivity,
one should refer to [11].

part : role name that refers to the first argument of the thing is part of individual
relationship type

entity type is classification type of entity type : name of a formal relationship type
where the first argument is a higher-order entity type whose instances form a
subtype partition of the second argument (also called higher-order
classification). Examples: BiologicalSpecies is classification type of Animal;
PassengerAircraftType is classification type of PassengerAircraft. Constraint:
For all t1, t2, t3: entity type – if t3 is classification type of t1 and t2 is instance of t3,
then t2 is subtype of t1.

classification type : role name that refers to the first argument of the entity type is
classification type of entity type relationship type. Corresponding names:
GFO:”higher-order universal”; BSBR:”categorization type”; UML:powertype.

entity type is classified by entity type : name of a formal relationship type that is the
inverse of the entity type is classification type of entity type relationship type.
Corresponding relationship type expressions: BSBR:”type has categorization-
scheme”.

2.2 Different Kinds of Types

In UFO, we make a fundamental distinction between datatypes, which are sets, and
entity types, which are not sets, but whose extensions are sets. Based on
[33,18,15,16], we distinguish between several different kinds of entity types, as
shown in Figure 2. These distinctions are elaborated in [14], in which we present a
philosophically and psychologically well-founded theory of types for conceptual
modelling. In [13], this theory is used to propose: (i) a profile for UML whose

 Towards Ontological Foundations for Agent Modelling Concepts Using the UFO 115

elements represent finer-grained distinctions between different kinds of types; (ii) a
set of constraints defining the admissible relations between these elements. One
should refer to [13,14] for: (a) an in-depth discussion of the theory underlying these
categories as well as the constraints on their relations; (b) a formal characterization of
the profile; (c) the application of the profile to propose an ontological design pattern
that addresses a recurrent problem in the practice of conceptual modelling.

In structured English, the different kinds of types are defined as follows.

datatype : set whose members are data values. In UFO, a datatype is a set-theoretic
representation of a conceptual space and the constraints imposed by its
geometrical structure (see [13]). Examples: Colour domain composed of hue,
saturation and brightness subdomains; Weight and Mass domains as linear
orders homomorphic to the half-line of non-negative numbers .

sortal type : entity type that carries a criterion for determining the individuation,
persistence and identity4 of its instances. An identity criterion supports the
judgment whether two instances are the same. Every instance in a conceptual
model must have an identity and, hence, must be an instance of sortal type.

base type : sortal type that is rigid (all its instances are necessarily its instances)
and that supplies an identity criterion for its instances [OntoClean:type].
Examples: Mountain; Person. Corresponding terms: BWW:”natural kind”.

phase type : sortal type that is anti-rigid (its instances could possibly also not be
instances of it without losing their identity) and that is an element of a subtype
partition of a base type [OntoClean:”phased sortal”]. Examples: Town and
Metropolis are phase subtypes of City; Baby, Teenager and Adult are phase
subtypes of Person.

role type : sortal type that is anti-rigid and for which there is a relationship type such
that it is the subtype of a base type formed by all instances participating in the
relationship type [OntoClean:role]. Examples: DestinationCity as role subtype of
City; Student as role subtype of Person.

mixin type : entity type that is not a sortal type and can be partitioned into disjoint
subtypes which are sortal types (typically role types) with different identity
criteria. Since a mixin is a non-sortal it cannot have direct instances
[OntoClean:non-sortal]. Examples: Object; Part; Customer; Product

relationship type : type whose instances are (material or formal) relationships

Notice that role types and phase types cannot supply an identity criterion for their
instances. For this reason, they must be derived from a suitable base type from which
they inherit their identity criterion.

The theory of types which is part of UFO-A provides a foundation for a number of
modelling primitives that, albeit often used, are commonly defined in an ad hoc
manner in the practice of conceptual modelling (e.g. kind, phase or state, role, mixin).

4
 For a deeper discussion on the notion of individuation, persistence and identity criteria and its
role in conceptual modelling one should refer to (Guizzardi et al, 2004).

116 G. Guizzardi and G. Wagner

Fig. 2. Different kinds of types in UFO-A 0.2

In particular, this theory can be considered as an elaboration in the way types are
accounted for in the BWW approach. In one of the BWW papers [5], it is proposed
that a UML class should be used to represent a BWW-natural kind (it should be
equivalent to functional schema of a BWW-natural kind). A natural kind is in the
same ontological footing as what is named here a Base type, i.e., it is a rigid type that
provides an identity criterion for its instances. As demonstrated in several works in
the literature [32,15,33,18,13], this kind of type construct constitutes only one of the
sorts that are necessary to represent the phenomena available in cognition and
language. In other words, a conceptual modelling construct representing a base type is
only one of a set of modelling constructs which should be available to the conceptual
modeler.

2.3 Different Kinds of Individuals

We distinguish a number of different kinds of individuals, as shown in Figure 3.
In structured English, these different kinds of individuals are explained as follows.

endurant : individual that is wholly present whenever it is present, i.e. it does not
have temporal parts. An endurant is something which persists in time while
keeping its identity. Examples are a house, a person, the moon, a hole, the
redness of an apple and an amount of sand. [DOLCE]

 Corresponding terms: GFO:3D-individual

perdurant : individual that is composed of temporal parts; whenever a perdurant is
present, it is not the case that all its temporal parts are present. The distinction
between endurants and perdurants can be understood in terms of the intuitive
distinction between “objects” (things, entities) and “processes” (events).
Examples of perdurants are a race, a conversation, the Second World War and a
business process [DOLCE]

 Towards Ontological Foundations for Agent Modelling Concepts Using the UFO 117

Fig. 3. Different kinds of individuals in UFO-A 0.2

substance individual : endurant that consists of matter (i.e., is ‘tangible’ or
concrete), possesses spatio-temporal properties and can exist by itself; that is, it
does not existentially depend on other endurants, except possibly on some of its
parts) [based on GFO:substance]. Examples: a house; a person; the moon; an
amount of sand.

 Corresponding terms: BWW:thing

moment individual : endurant that cannot exist by itself; that is, it depends on other
endurants, which are not among its parts [based on GFO:moment]. Examples: the
redness of a certain apple; a belief of Noam Chomsky; a flight connection
between two cities.

endurant bears moment individual : designated relationship [based on GFO:
“substance bears moment”]

physical object : substance individual that satisfies a condition of unity and for
which certain parts can change without affecting its identity. Examples: a house;
a person; the moon.

amount of matter : substance individual that does not satisfy a condition of unity;
typically referred to by means of mass nouns. Amounts of matter are, in general,
mereologically invariant, i.e., they cannot change any of their parts without
changing their identity [DOLCE]. Examples: a liter of water; a piece of gold; a
pile of sand.

intrinsic moment : moment individual that is existentially dependent on one single
individual

intrinsic moment inheres in endurant : designated relationship [GFO]

quality : intrinsic moment that inheres in exactly one endurant and can be mapped to
a value (quale) in a quality dimension [13]. Corresponding terms: GFO:quality;

118 G. Guizzardi and G. Wagner

DOLCE:quality; BWW: “intrinsic property”. Examples: the colour (height,
weight) of a physical object; an electric charge. Constraint: For all e1, e2 :
endurant; q:quality — if q inheres in e1 and q inheres in e2, then e1 is equal to e2.

relational moment: moment individual that is existentially dependent on more than
one individual. Relational moments provide a foundation for the construction of
material relationships between individuals [13]. The category of relational
moments in UFO is based on the concept of a [GFO:Relator]. The notion of
relators is supported in several works in the philosophical literature [23,24] and,
the position advocated here is that, they play an important role in: (i)
distinguishing material relations such as ‘being married to’ and ‘studies at’ from
their formal counterparts (e.g. 5 is greater than 3, this day is part-of this month);
(ii) answering questions of the sort: what does it mean say that John is married to
Mary? Why is it true to say that Bill works for Company X but not for Company
Y? Corresponding terms: BWW:”mutual property”. Examples: a particular
employment (Susan is employed by IBM); a particular flight connection (LH403
flies from Berlin to Munich); a kiss; a handshake.

Putting all UFO-A terms and relationship type expressions together in one
UML/MOF diagram results in figure 8 in APPENDIX A.

2.4 An Application of UFO-A 0.2 to Agent-Oriented Modelling

2.4.1 Modelling Agent Roles
In figure 4, the role type Customer is defined as a supertype of Person and
Corporation. This model is deemed ontologically incorrect for two reasons: first, not
all persons are customers, i.e. it is not the case that the extension of Person is
necessarily included in the extension of Customer. Moreover, an instance of Person is
not necessarily a Customer. Both arguments are also valid for Organization. In a
series of papers [25,26], Steimann discusses the difficulties in specifying supertypes
for Roles that can be filled by instances of disjoint types5. As a conclusion, he claims
that the solution to this problem lies in the separation of role type and base type
(named natural type in the article) hierarchies; a solution which would strongly
impact the metamodel of all major conceptual modelling language. By using the
theory of types underlying UFO-A, we can show that this claim is not warranted and
we are able to propose a design pattern that can be used as an ontologically correct
solution to this recurrent problem [14].

In this example, Customer has in its extension individuals that obey different
identity criteria, i.e., it is not the case that there is a single identity criterion that
applies both for Persons and Corporations. Customer is hence a mixin type (a non-
sortal) and, by definition, cannot supply an identity criterion for its instances. Since
every instance in the model must have an identity, every instance of Customer must
be an instance of one of its subtypes (forming a partition) that carries an identity
criterion. For example, we can define the sortals PrivateCustomer and Corporate-

5 This problem is also mentioned in (van Belle, 1999): “how would one model the customer

entity conceptually? The Customer as a supertype of Organisation and Person? The
Customer as a subtype of Organisation and Person? The Customer as a relationship between
or Organisation and (Organization or Person)?.”

 Towards Ontological Foundations for Agent Modelling Concepts Using the UFO 119

Customer as subtypes of Customer (Figure 5). These sortals, in turn, carry the
(incompatible) identity criteria supplied by the base types Person and Corporation,
respectively.

In summary, in many modelling problems, we have to model agent types that are
role mixin types, which implies that

1. there is a disjoint partition into subtypes, and
2. these subtypes are role types, that is they are subtypes of appropriate base

types.

Customer

Person Corporation

Fig. 4. An ontologically incorrect
model of roles

«mixin ty pe»
Customer

«role ty pe»
PersonalCustomer

«role ty pe»
CorporateCustomer

«base ty pe»
Person

«base ty pe»
Corporation

Fig. 5. An ontologically correct version of
(Figure 4) according to UFO 0.2

3 UFO-B 0.2 – Perdurants

A complete treatment of an ontology of perdurants requires a an ontology of temporal
entities (GFO:chronoids) [4]. In this section, instead, we restrict our attention to the
most basic perdurant categories for defining UFO-B 0.2 as a foundation for defining
some intentional and social entities in section 4. In the sequel we discuss the
following basic kinds of perdurants shown in Figure 6: (atomic and complex) events
and states.

Perdurant
(from UFO-A)

EventState

Atomic
Event

Complex
Event

PreState

1 *

PostState1 *

*

2..*

Fig. 6. The perdurant categories of UFO-B 0.2

120 G. Guizzardi and G. Wagner

state : perdurant that is homeomeric (each temporal part of it is again a state) [based
on DOLCE]

event : perdurant that is related to exactly two states (its pre-state and its post-state).
An event is related to the states before and after it has happened.

atomic event : event that happens instantaneously, i.e. an event without duration,
relative to an underlying time granularity [based on BWW:event and
GFO:change]. Examples: an explosion; a message reception.

complex event : event that is composed of other events by means of event
composition operators. Examples: a parallel occurrence of two explosions; an
absence of a message reception (within some time window); a storm; a heart
attack; a football game; a conversation; a birthday party; the Second World War;
a Web shop purchase.

state is pre-state of event : name of a formal relationship type

state is post-state of event : name of a formal relationship type

4 UFO-C 0.2 – Intentional, Social and Linguistic Things

The ‘objective’ perdurant categories event, process and state defined in UFO-B are
essential concepts for process modelling, but they are not sufficient for business
process modelling, where intentional and social concepts such as action, activity and
communication are needed. The following account of intentional and social things is
at an early stage of development and therefore rather incomplete. Nevertheless, we
think that it gives an impression of the range of ontological categories that is needed
to explain business process modelling.

physical agent : physical object that creates action events affecting other physical
objects, that perceives events, possibly created by other physical agents, and to
which we can ascribe a mental state

 Examples: a dog; a human; a robot

action event : event that is created through the action of a physical agent

non-action event : event that is not created through an action of a physical agent

physical agent creates action event: designated relationship

physical agent perceives event: designated relationship

non-agentive object : physical object that is not a physical agent

 Examples: a chair; a mountain

mental moment : intrinsic moment that is existentially dependent on a particular
agent, being an inseparable part of its mental state

 Examples: a thought; a perception; a belief; a desire; an individual goal

 Constraint: For all mm : mental moment; e:endurant — if mm inheres in e then e
is physical agent.

 Towards Ontological Foundations for Agent Modelling Concepts Using the UFO 121

communicating physical agent : physical agent that communicates with other
communicating physical agents

 Examples: a dog; a human; a communication-enabled robot

institutional agent : institutional fact [22] that is an aggregate consisting of
communicating agents (its internal agents), which share a collective mental state,
and that acts, perceives and communicates through them

 Examples: a business unit; a voluntary association

agent : endurant that is either a physical agent or an institutional agent

communicating agent : agent that communicates with other communicating agents

social moment : relational individual that is existentially dependent on more than
one communicating agent

 Examples: a commitment; a joint intention

The above categories are also defined in the MOF/UML model of figure 7.

Intrinsic
Moment

Physical
Agent

Non-Action
Event

MentalMoment

1* inheres in

ActionEvent

1..*

*creates

*

*

perceiv es

Non-Agentive
Object

Communicating
PhysicalAgent

SocialMoment

{disjoint}

* 2..*

 bears

Institutional
Agent InternalAgent*

*

Communicating
Agent

Belief

Commitment

Perception

PhysicalObject
(from UFO-A)

Event
(from UFO-B)

Moment Individual
(from UFO-A)

Communicative
ActionEvent

{disjoint}

{disjoint}

Receiv er

1..*

*

Sender 1

*

{disjoint}

Relational
Moment

Fig. 7. The categories of the UFO-C 0.2 agent ontology

Agents may interact with their inanimate environment, or they may interact with
each other involving some form of communication; in the latter case we speak of
social interaction.

We consider a business process as a special kind of a social interaction process.
Unlike physical or chemical processes, social interaction processes are based on
communication acts that may create commitments and are governed by norms. We
distinguish between an interaction process type and an interaction process individual,

122 G. Guizzardi and G. Wagner

while in the literature the term business process is used ambiguously both at the type
and at the instance level.

interaction process : process that includes at least one perception event and one
action event perceived and performed by agents that participate in it. Examples:
someone turning on the light in the office when it becomes dark outside; a
football game; a conversation; a birthday party; the Second World War; a Web
shop purchase.

social interaction process : interaction process that includes at least one
communicative action event. Examples: a football game; a conversation; a
birthday party; the Second World War; a Web shop purchase.

business process : social interaction process that occurs in the context of a business
system and serves a purpose of that system. Examples: a football game; a Web
shop purchase.

6 Conclusions

The unified foundational ontology UFO is stratified into three ontological layers in
order to distinguish its core, UFO-A, from the perdurant extension layer UFO-B and
from the agent extension layer UFO-C. Although there is not much consensus yet in
the literature regarding the ontology of agents, such an ontology is needed not only as
a basis of agent-oriented modelling but also of business process modelling. UFO-C
0.2 is a first attempt to construct these foundations. We hope that we can validate and
further improve it by investigating its applicability to agent-oriented modelling
problems.

Acknowledgement. Giancarlo Guizzardi’s work on this paper is funded by the
Freeband A-MUSE project. Freeband (http://www.freeband.nl) is sponsored by the
Dutch government under contract BSIK 03025.

References

1. Bunge, M. (1977). Treatise on Basic Philosophy. Vol. 3. Ontology I. The Furniture of the
World. D. Reidel Publishing, New York.

2. Bunge, M. (1979). Treatise on Basic Philosophy. Vol. 4. Ontology II. A World of
Systems. D. Reidel Publishing, New York.

3. Chapin et al (2004). Business Semantics of Business Rules (BSBR). Initial Submission to
OMG BEI RFP br/2003-06-03, 12 January 2004. Available from http://www.omg.org/cgi-
bin/doc?bei/04-01-04.

4. Degen, W., Heller, B., Herre, H. & Smith, B. (2001). GOL: Towards an axiomatized
upper level ontology. In Smith, B. & Guarino, N. (eds.), Proceedings of FOIS’01,
Ogunquit, Maine, USA, October 2001. ACM Press.

5. Evermann, J. & Wand Y. (2001). Towards ontologically based semantics for UML
constructs. In Kunii, H.S., Jajodia, S. & Solvberg, A. (eds.), Proceedings of ER 2001,
pages 354–367, Springer-Verlag.

 Towards Ontological Foundations for Agent Modelling Concepts Using the UFO 123

6. Gangemi, A., Guarino N., Masolo C., Oltramari, A. & Schneider L. (2002). Sweetening
Ontologies with DOLCE. Proceedings of EKAW 2002, Siguenza, Spain.

7. Gärdenfors, P. Conceptual Spaces (2000): the Geometry of Thought. MIT Press, USA,
2000.

8. Green, P.F. & Rosemann, M. (2000). Integrated Process Modelling: An Ontological
Evaluation. Information Systems 25 (2), 73-87.

9. Green, P.F. & Rosemann, M. (2002). Usefulness of the BWW Ontological Models as a
"Core" Theory of Information Systems. In Proceedings Information Systems Foundations:
Building the Theoretical Base, Canberra, 2002, 147-164.

10. Guizzardi, G., Herre, H. & Wagner G. (2002a). On the General Ontological Foundations
of Conceptual Modelling. In Proceedings of 21th International Conference on Conceptual
Modelling (ER 2002). Springer-Verlag, Berlin, Lecture Notes in Computer Science.

11. Guizzardi, G., Herre, H., Wagner G. (2002b): Towards Ontological Foundations for UML
Conceptual Models. In Proceedings of 1st International Conference on Ontologies
Databases and Applications of Semantics (ODBASE 2002), Springer-Verlag, Berlin,
Lecture Notes in Computer Science.

12. Guizzardi, G., Wagner G., Guarino, N.; van Sinderen, M. (2004): An Ontologically well-
Founded Profile for UML Conceptual Models, In Proceedings of the 16th International
Conference on Advanced Information Systems Engineering (CaiSE). Springer-Verlag,
Berlin, Lecture Notes in Computer Science.

13. Guizzardi, G., Wagner G., Herre, H. (2004): On the Foundations of UML as an Ontology
Representation Language. In Proceedings of 14th International Conference on Knowledge
Engineering and Knowledge Management (EKAW), Springer-Verlag , Berlin, Lecture
Notes in Computer Science.

14. Guizzardi, G., Wagner G., van Sinderen, M. (2004): A Formal Theory of Conceptual
Modelling Universals, In Proceedings of the International Workshop on Philosophy and
Informatics (WSPI), Germany.

15. Gupta, A. (1980). The Logic of Common Nouns: an investigation in quantified modal
logic, Yale University Press, New Haven.

16. Hirsch, E. (1982). The Concept of Identity. Oxford University Press, New York, Oxford.
17. ISO (2000). ISO 1087-1 Terminology work - Vocabulary - Part 1: Theory and application.

Copies of all ISO standards can be purchased from ANSI, 25 West 43rd Street, New York,
NY 10036, (212) 642-4980, info@ansi.org, or http:webstore.ansi.org".

18. Leeuwen, J. van (1991). Individuals and sortal concepts: an essay in logical descriptive
metaphysics, PhD Thesis, University of Amsterdam.

19. Loebe, F. (2003): An Analysis of Roles: Towards Ontology-Based Modelling, Diploma
Thesis, Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University
of Leipzig.

20. Opdahl, A.L. & Henderson-Sellers, B. (2002). Ontological evaluation of the UML using
the Bunge-Wand-Weber Model. Software and Systems Journal 1 (1), 43-67.

21. OMG, Object Management Group (2003). Meta Object Facility (MOF) 2.0 Core
Specification, version 2.0, http://www.omg.org/docs/ptc/03-10-04.pdf

22. Searle, J.R. (1995). The Construction of Social Reality. Free Press, New York.
23. Smith, B.; Mulligan, K. (1983): Framework for Formal Ontology, Topoi (3), 73-85.
24. Smith, B.; Mulligan, K. (1986): A Relational Theory of the Act, Topoi (5/2), 115-30.
25. Steimann, F. (2000a): On the representation of roles in object-oriented and conceptual

modelling, Data & Knowledge Engineering 35:1, 83–106.
26. Steimann, F. (2000b): A radical revision of UML's role concept, in: A Evans, S Kent, B

Selic (eds) UML 2000 Proceedings of the 3rd International Conference (Springer, 2000)
194–209.

124 G. Guizzardi and G. Wagner

27. van Belle, J.P. (1999). Moving Towards Generic Enterprise Information Models: From
Pacioli to CyC. Proceedings of the 10th Australasian Conference on Information Systems,
Wellington.

28. Wand, Y. & Weber, R. (1989). An ontological evaluation of systems analysis and design
methods. In Falkenberg, E.D. & Lindgreen, P. (eds.), Information System Concepts: An In-
depth Analysis, North-Holland.

29. Wand, Y. & Weber, R. (1990). Mario Bunge's Ontology as a formal foundation for
information systems concepts. In Weingartner, P. & Dorn, G.J.W. (eds.), Studies on Mario
Bunge's Treatise, Rodopi, Atlanta.

30. Wand, Y. & Weber, R. (1995). On the deep structure of information systems. Information
Systems Journal 5, 203-223.

31. Wand, Y., Storey, V.C. & Weber, R. (1999). An ontological analysis of the relationship
construct in conceptual modelling. ACM Transactions on Database Systems, 24(4):494–
528.

32. Welty, C. & Guarino, N (2001). Supporting Ontological Analysis of Taxonomic
Relationships. Data and Knowledge Engineering, 39(1), 51-74.

33. Wiggins, D. (2001). Sameness and Substance Renewed, Cambridge University Press.

APPENDIX A

Fig. 8. UFO-A 0.2 as a MOF/UML model

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 125 – 139, 2005.
© Springer-Verlag Berlin Heidelberg 2005

AgentZ: Extending Object-Z for Multi-agent
Systems Specification

Anarosa A. F. Brandão1, Paulo Alencar2, and Carlos J. P. de Lucena1

1 PUC-Rio, Computer Science Department, SoC+Agent Group,
Rua Marques de São Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil

{anarosa, lucena}@inf.puc-rio.br
2 University of Waterloo, Computer Science Department, Computer Systems Group

Waterloo, Ontario, N2L 3G1 Canada
palencar@csg.uwaterloo.ca

Abstract. Agent-orientation has gained increased importance in recent years
with the emergence and growth of the World Wide Web, both as an area of
study in itself and as a component of other disciplines such as software
engineering. As a result, this has led to an increased amount of research
developing new informal and formal software engineering techniques to support
agent-oriented system specification, design, validation and development. In this
paper, we present a formal notation called AgentZ that combines the model
concepts and structure proposed by TAO (Taming Agents and Objects), a
conceptual framework that provides conceptual foundations for agents and
objects, with the well known Z and Object-Z formal representation languages.
AgentZ was built to provide a formal notation that allows the verification of
design models, a key issue within the emerging agent-oriented software
engineering research and, as a result, it can help to improve the quality of MAS.

1 Introduction

Nowadays, the use of software systems in business organizations is rapidly increasing
and globalization is one of the trends behind the transformation of many of those
systems into distributed information systems (DIS). Agent-orientation is emerging as
a new paradigm in software engineering that seems to be well-suited for developing
DIS using a multi-agent system (MAS) approach. In addition, the distribution of
information and associated technologies indicate that open and distributed
architectures are becoming essential for the development of software systems [14].
The complexity associated with these systems is growing fast and, in order to deal
with this problem, the research community is developing new methodologies based
on agent concepts. Several research results address the analysis and design
development phases, and some modelling languages and methodologies such as
MAS-ML[13], AUML [1], Gaia[19], MaSE [18], and AORML [17] have been
proposed in the literature.

Software engineering of MAS is at its early stage of development and many related
concepts and abstractions are still under development and formalization. Our research

126 A.A.F. Brandão, P. Alencar and C.J.P. de Lucena

group1 is working to provide a better understanding of the interplay between the
notions of agents and objects in the development of MAS from a software engineering
perspective. Following this path, we have first developed TAO [14], a conceptual
framework that provides an approach to agent and object-based software engineering,
while defining an ontology that establishes the essential concepts or abstractions that
can be used to develop an MAS. Thereafter, one of our colleagues developed MAS-
ML. MAS-ML is a multi-agent system modelling language that extends UML
(Unified Modelling Language) [16], based on the structural and dynamic properties
presented in TAO. In this work we present a first version of a formal notation called
AgentZ that combines the structure proposed in TAO for agents and objects with the
well-known formal notation Z [15] and Object-Z[3,4].

The combination of agent and object-orientation structure with Z took advantage of
the idea adopted by Object-Z of encapsulating state and operations in a single
structure. AgentZ extends Object-Z with new constructs to enhance structuring and to
accommodate new agent-oriented entities such as agents, organizations, roles and
environments.

AgentZ is a formal notation that allows the verification of design models, a key
issue within the emerging research area of agent-oriented software engineering. By
design verification we mean the process of checking that a design conforms to its
specification. We believe that AgentZ can help produce better system design models
and, as a result, will help pave the way for the development of MASs using MDA
approach [10].

The structure of this work is as follows. In Section 0 we describe the TAO
conceptual framework, the MAS-ML modelling language and the Object-Z formal
notation. In Section 0 we describe the abstract syntax of AgentZ and some of its
semantics. In Section 0 we illustrate our approach by an example and in Section 0 we
describe some related work. Finally, in Section 0 we present our conclusions and
future work.

2 Background

The main reason for developing AgentZ is that agents and objects are conceptually
different in essence. Actually, the state and behaviour of agents and objects differ in a
way that prevents the general use of object-orientation extension mechanisms. The
state of an object is composed of stored information about itself, about the
environment and about other objects, and does not have any predefined structure as
well. On the other hand, the agent state is composed of its goals, beliefs, plans and
actions, and does have some predefined structure. Object behaviour is defined by the
operations an object can perform, and agent behaviour is guided by the agency
properties such as autonomy, interaction and adaptation.

Our research group has developed TAO, and, as a spin-off from this investigation,
one of our colleagues developed MAS-ML by augmenting the UML metamodel with
some new metaclasses that represent agent abstractions. Based on the idea that
MAS-ML extends the UML metamodel, we have decided to extend the Object-Z

1 www.teccomm.les.inf.puc-rio.br/socagents

 AgentZ: Extending Object-Z for Multi-agent Systems Specification 127

metamodel in a similar way to define AgentZ. Therefore, it will be possible to define
a formal mapping between MAS-ML models and AgentZ specifications, since such a
mapping can be defined between UML models and ObjectZ specifications [8].
Having such a mapping between MAS-ML models and AgentZ specifications will
give a precise semantics to the MAS-ML models which entitle us to verify them. In
the following we introduce the TAO conceptual framework and briefly describe
MAS-ML and Object-Z.

The TAO Conceptual Framework
TAO (Taming Agents and Objects) is a conceptual framework developed by our
research group for two main purposes. The first was to better understand the interplay
between the notions of agents and objects, and the second was to provide a systematic
approach to agent and object-based software engineering. This framework defines an
ontology with the essential abstractions that can be used to develop an MAS.

In TAO, an MAS comprises classes and instances of agents, objects and
organizations. TAO entities are agents, objects, organizations, roles (agent and object
roles), environments and events. Agents, organizations and objects inhabit
environments [7, 9]. While objects represent passive elements, such as resources,
agents represent autonomous elements that manipulate objects. Agents have beliefs
and goals, they know how to execute some actions and plans, and they are always
playing a role in an organization. An organization describes a set of roles [2] that may
limit the behaviour of its agents, objects and sub-organizations [20]. Furthermore,
organizations have axioms that guide the behaviour of their agents based on the roles
they play. Agents and objects can be members of different organizations and play
different roles in each of them [11]. Agents may interact with each other and
cooperate either to achieve a common goal, or to achieve their own goals [22]. Agent
interactions with elements that are not agents are based on relationships. Interactions
between agents occur when messages described in a specific communication language
are exchanged. An agent can interact with agents from the same organization or with
agents from a different one. The relationships defined on TAO are Inhabit, Play,
Ownership, Control, Dependency, Association and Aggregation.

The MAS-ML Modelling Language
MAS-ML is an MAS modelling language that extends UML in a conservative way
and is based on TAO metamodel [13]. MAS-ML adds new metaclasses to the UML
metamodel in order to include TAO concepts that are not object-oriented. In the
following, we describe the MAS-ML metamodel.

The MAS-ML metamodel extends (part of) the UML metamodel by adding new
metaclasses to the metamodel and by creating new stereotypes to support agent-
orientation. The new metaclasses AgentClass, OrganizationClass, ObjectRoleClass
and AgentRoleClass extend the UML metaclass Classifier, and they refer to agent,
organization, object role and agent role TAO abstractions, respectively. In addition,
the new metaclasses PlanClass, ActionAgent and ProtocolClass extend the UML
metaclass Behavioural Feature and they refer to plans, actions and protocols that an
agent can perform.

128 A.A.F. Brandão, P. Alencar and C.J.P. de Lucena

The metaclass AgentClass has the structural features Belief and Goal. These
features are defined by using stereotypes based on the Attribute metaclass, which is a
specialization of the StructuralFeature UML metaclass. Moreover, an AgentClass is
also associated with the new metaclasses ActionAgent, PlanClass, and ProtocolClass.

In our formal notation, we describe these new metaclasses as new constructs using
a Z-like style following the Object-Z [3] idea. Furthermore, the new stereotypes
define new or given sets. In this work we will focus on the AgentClass, the
AgentRoleClass and the OrganizationClass constructs.

Object-Z
Object-Z is an extension of the formal specification language Z to accommodate
object-oriented concepts. This extension introduces a class structure to Z structures
that encapsulates a single state schema with the operations that may affect that state
[4]. Instances of class structures are called objects. Also, Object-Z uses the same
pattern of class instantiation in object-orientation, through the definition of object
containment, which stores the object id every time a class is instantiated. In addition,
Object-Z supports (multiple) inheritance, which means that complex classes can be
specified in terms of simpler ones. One of the main benefits of Object-Z is to improve
the clarity of large specifications through enhanced structuring [4].

3 AgentZ

Our formal notation is called AgentZ, which is obtained by adding some new
constructs to Object-Z. As in the case of the Object-Z definition, we are also using the
Z notation from [15]. In the following, we present the formal notation that will be
illustrated in Section 0 through an example related to the supermarket domain.

Basic Concepts
The metamodel of AgentZ is based on the TAO conceptual framework. Moreover, as
it shares the same basis as the MAS-ML metamodel, they present several similarities.
The AgentZ metamodel is shown in Figure . As in MAS-ML the Class metaclass is
borrowed from the UML metamodel, the (object) class in AgentZ is the Class schema
borrowed from Object-Z. According to TAO, agents, objects, organizations, roles and
environments are elements. Elements are entities that have properties and
relationships, and agents are elements that extend objects by redefining their state and
behavioural properties. In this sense, both agents and objects are element extensions
that redefine the element state and behavioural properties. The structural properties of
an agent are expressed by its beliefs and goals. The agent behavioural properties are
expressed by its plans and actions and the roles it plays.

The AgentZ metamodel defines Agent, Organization, AgentRole, Environment,
and Object as extensions of Element. As agents are always playing at least one role in
an organization, they depend on agent roles. Organizations extend agents in the sense
that organizations have the same structural (goals and beliefs) and behavioural (plans
and actions) properties that agents have with additional capabilities. Environments
extend Element since they have structural (and possibly behavioural) properties that

 AgentZ: Extending Object-Z for Multi-agent Systems Specification 129

Relationship := Inhabit | Play | Specialization | Control | Dependency |
Association | Aggregation | Ownership

Belief == PAttribute and Goal == PAttribute

characterize them, and they have relationships to other elements (such as Inhabit and
Association, among others).

The main reason for extending Object-Z by adding structures to Object-Z instead
of simply extending the Class schema of Object-Z is that the state of an agent is a
mental state that, in contrast with the state of an object, includes structural (goals and
beliefs) and behavioural (actions and plans) properties.

Fig. 1. The AgentZ metamodel

We adopt d’Inverno and Luck’s [6] definition for Attribute: an attribute is every
perceivable feature, and the set of all attributes is defined as [Attribute]. Beliefs and
goals are perceivable features that can be defined as subsets of Attribute. The set of
relationships defined in TAO is shown in Figure 2. The main AgentZ extension is the
new AgentClass construct. We note that in principle agents cannot be simply defined
as a stereotype of objects since they are object extensions that redefine the object state
and behaviour, and we cannot use the Class construct of Object-Z to represent them.

Fig. 2. Initial sets

In order to define some relationships described in Fig. 2.2, we define sets of names
for each new construct of our formal notation. Each name is of type String, and this
makes it possible to perform operations involving names. All the names are elements
of the given set [Names]. The relationships are binary relations whose signatures are
specified in Figure 3.

An AgentClass is the structure for the agent abstraction. Each AgentClass instance
is an agent and it has a name ending with the keyword _Agent. Agents are related to

Element

AgentRole Agent

Organization

Environment Object

Element

AgentRole Agent

Organization

Environment

Element

AgentRole Agent

Organization

Element

AgentRole Agent

Organization

Element

AgentRole Agent

Organization

Environment Object

130 A.A.F. Brandão, P. Alencar and C.J.P. de Lucena

agent roles, to organizations, to objects and to environments. An AgentRoleClass is
the structure for the agent role abstraction. Each AgentRoleClass instance is an agent
role and it has a name ending with the keyword _AgRole. Agent roles are related to
agents, objects and organizations. An OrganizationClass is the structure for the
organization abstraction. Each OrganizationClass instance is an organization that has
a name ending with the keyword _Org and that is related to all TAO elements.
Elements are agents, objects, organizations, agent roles and environments. An
Environment is the structure for the environment abstraction. Its instance is an
environment and it has a name ending with the keyword _Env. Moreover, an
environment is related to citizens. Citizens are agents, objects and organizations.
Agents are always playing roles, and these roles define the protocols the agent must
follow to communicate with other agents. Protocols are specified via the
ProtocolClass schemata and their names end with the keyword _Protocol. Agent
communication is defined through messages. Messages are specified via the
MessageAgent schemata and their names end with the keyword _Msg. An agent
achieves its goals through the execution of plans, and a plan consists of agent actions.
A PlanClass is the structure that defines a plan an agent can execute. It is always
related to a goal. In our formal notation, a PlanClass schema name ends with the
keyword _Plan. Agent actions are specified by ActAgentClass schemata and their
names end with the keyword _ActAgent. Agents’ beliefs and goals can be described as
logical expressions. Organizations have axioms that describe the laws that guide the
behaviour of their agents.

Fig. 3. Signature of the relationships

The relationships defined in TAO are Inhabit, Play, Dependency, Association,
Control, Aggregation, Specialization/Inheritance and Ownership. They are binary
relations between elements. Elements encompass agents, objects, organizations, agent
roles and environments. The Inhabit relationship relates each citizen to the
environment in which it is registered. The Play relationship relates each citizen to the
role it plays. Dependency is a relationship between agent roles. It establishes that a

Name_RolesName_Org:Ownership

Name_nAbstractioName_nAbstractio:tionSpecializa

Name_AggregatedName_Aggregated:nAggregatio

Name_AgRoleName_AgRole:Control

meElement_NameElement_Na:nAssociatio

Roles_NameRoles_Name:Dependency

Name_RoleName_Citizen:Play

Env_Name meCitizen_Na :Inhabit

×
×

×
×

×
×

×
×

 AgentZ: Extending Object-Z for Multi-agent Systems Specification 131

change in a role that supplies another role affects the supplied one. Association is a
relationship between elements. Control is a relationship between agent roles, meaning
that an agent that plays a role controlled by other agent role must do everything the
controller asks it to do. Aggregation is a relationship between objects, between object
roles, between agent roles and between organizations. It has the same meaning in
object orientation, e.g,. the aggregated element is part of the aggregator element.
Specialization is a relationship that relates a sub-element to a super-element in a sense
that the sub-element can redefine the properties and relationships inherited from the
super-element. Ownership is a relationship that relates an organization to the roles
that are defined in it.

Our formal notation begins with the definition of an Element schema in the same
way it is defined in TAO. An element is an entity that has properties and relationships
but we have omitted its definition for brevity.

According to TAO, an Environment is an element that is the habitat for agents,
objects and organizations, which define the set of citizens. The main characteristic of
a citizen has to be registered in a specific environment.

Agent and Agent Role Structures
Syntactically, an AgentClass is a named box (Figure 4) that extends an Element and
includes a list of inherited AgentClass schema names, a list of included ActAgentClass
schemata, a list of included PlanClass schemata and two sets of AgentRoleClass
names. The inherited AgentClass schemata provide support multiple inheritance. The
included ActAgentClass and PlanClass schemata represent the actions and plans that
can be performed by the agent, independently of the role it is playing. The sets of
roles indicate the roles the agent can play during its lifecycle (roles) and the roles that
it must play when the AgentClass is instantiated (init_roles). Following the way
Object-Z was defined, there is an Init box inside the AgentClass structure, which
enforces that when an AgentClass is instantiated the agent must be registered in an
Environment and it must be associated with an initial role. This role must be one of
the roles in the set init_roles, which means that the set roles contains init_roles.

An AgentClass also has an “axiom part”. Separated from the descriptions
previously described by a horizontal line, there is a specification of the Element
extension and a restriction related to the sets of AgentRoleClass names. The Element
extension is specified by the set of properties description as the union of the sets
Belief and Goal, which represent the structural agent properties. In addition, the
description of the relationships set is composed of the relationships Inhabit, Play,
Association and Specialization. The restriction about the sets of roles specifies that the
initial roles must be in the set of roles the agent can play during its lifecycle.

As can be seen, the AgentClass structure is quite complex, including in its
description other new structures such as ActAgentClass, PlanClass and
AgentRoleClass. We will describe these new structures in the following paragraphs
and then illustrate them using an example from the market domain.

In order to describe the AgentClass construct in more detail we define constructs
used in its definition. The PlanClass schema is a named box whose name finishes
with the keyword _Plan, and it includes the set of goals that the plan can achieve and

132 A.A.F. Brandão, P. Alencar and C.J.P. de Lucena

the associated actions. Separated from them by a horizontal line, it includes an axiom
part consisting of the sequence of actions that need to be executed in order to achieve
the goal(s). Plans are not necessarily defined as ordered sequences of actions. An
agent must have at least one plan and, in the case of planner agents, a plan can consist
of building a plan to achieve its goals. An example of a PlanClass can be found in
Section 4.

The ActAgentClass schema differs from the Operation schema of Object-Z in a
significant way: it does not contain a list of affected states, but includes a list of pre-
conditions and the result the action must produce. The action result can be a goal
achievement, the satisfaction of another action pre-condition or even the maintenance
of the initial pre-condition (e.g., in this case the action is not executed successfully).
An example of this schema can be found in Section 0.

Fig. 4. AgentClass structure in AgentZ

According to TAO, an agent is always playing a role, which affects the agent
behaviour by defining the protocols the agent must follow in order to interact with
other agents, the actions it can execute and the actions it must execute to achieve its
goals. We define an AgentRoleClass schema as a named box () and its name ends
with the keyword _AgRole. Following this idea and the MAS-ML metamodel, an
AgentRoleClass extends an Element and includes a list of ProtocolClass schemata, a
set of PlanClass schema names (plans), and sets of action names (duties and rights).
The set duties contains the actions the agent that play this role must perform and the

()

rolesroles_init

tionSpecializa

n,AssociatioPlay,Inhabit,
:ipsrelationsh

GoalBelief:properties

roles_initInitRole

roles_initOneOfInitRole

Register

Name_AgRoleP:roles_init,roles

PlanClass

assActAgentCl

AgentClass

Element

⊆

∪

∈
=

1

schemas included

schemas included

schemas inherited oflist

AgentClass

Init

()

rolesroles_init

tionSpecializa

n,AssociatioPlay,Inhabit,
:ipsrelationsh

GoalBelief:properties

roles_initInitRole

roles_initOneOfInitRole

Register

Name_AgRoleP:roles_init,roles

PlanClass

assActAgentCl

AgentClass

Element

⊆

∪

∈
=

1

schemas included

schemas included

schemas inherited oflist

AgentClass

Init

 AgentZ: Extending Object-Z for Multi-agent Systems Specification 133

set rights contains the actions the agent can perform. Following the same pattern used
in the definition of the AgentClass schema, the extension of Element is specified by
describing the properties as the union of the sets Belief and Goal, and by describing
the relationships set as composed of Control, Dependency, Association, Aggregation
and Specialization. The restriction about the sets duties and rights is that the former
set is contained in the latter.

Fig. 5. AgentRoleClass structure in AgentZ

We note that in the AgentRoleClass schema there are some protocol schemata. In
MAS-ML, protocols define the set of interactions that an agent must perform in order
to communicate with other agents. Actually, these interactions are sequences of
messages exchanged by agents while playing roles that can be defined as a relation
between two sets of Msg_Name. The ProtocolClass structure definition includes a set
of Msg_Name and a set of interactions.

Agent Organizations
The OrganizationClass schema is a named box (Figure 6) whose name ends with the
keyword _Org. As an organization extends the properties an agent has, its schema
includes agent properties and relationships. The extension is obtained via the
specification of the organization relationships, a declaration stating that the set of
initial roles to be played by an organization is empty, as well as a declaration stating
that the content of the set roles is composed of the roles that can be played by this
organization within the context of another. In addition, the OrganizationClass schema
includes a list of AgentClass names. This list specifies the agents that are related to
the organizations created from this schema. The Ownership relationship and the
projection function second [15] define the set roles. The initial state of an
organization is defined by its register in an environment. Moreover, an
OrganizationClass schema has a set of axioms that contains the laws that guide the
behaviour of the agents in the organization.

rightsduties

tionSpecializa,nAggregatio

,nAssociatio,Dependency,Control
:ipsrelationsh

GoalBelief:properties

Name_Planplans

ameActAgent_Nrights duties,

assProtocolCl

Element

⊆

∪

1

1

P :

P :

schemas included

AgentRoleClass

rightsduties

tionSpecializa,nAggregatio

,nAssociatio,Dependency,Control
:ipsrelationsh

GoalBelief:properties

Name_Planplans

ameActAgent_Nrights duties,

assProtocolCl

Element

⊆

∪

1

1

P :

P :

schemas included

AgentRoleClass

134 A.A.F. Brandão, P. Alencar and C.J.P. de Lucena

Fig. 6. OrganizationClass structure in AgentZ

4 Working Example: A Supermarket

The example we are considering, which involves a supermarket, is the same example
as that used in [13]. We consider a market where buyers and sellers negotiate
products. Sellers advertise their desire to sell products, publishing offers in the
market. Buyers access the market in order to buy products. They look for offers that
fulfil their needs. Buyers can buy wholesale or retail items. Usually, wholesale items
have a lower price per unit. However, sometimes the buyer does not need all the units
packaged as one item. Therefore, buyers can form groups to find other buyers
interested in the same item. The group of buyers buys the item and distributes the
units among the buyers.

Figure 7 shows an example of the AgentClass schema. It is part of the system
model that represents the user agent. The user agent of the example can be initialized
as a buyer or a seller. The user agent beliefs are Item, RetailOffer, WholeSaleOffer,
Proposal and CounterProposal. The goal of this agent is to deal with items.

An example of the AgentRoleClass schema can be seen in Figure 8, where the role
buyer, which can be played by the User_Agent, is described. The goal of this role is to
buy an item and his duty is to look for items. The rights that the User_Agent has
while playing the Buyer_AgRole include that one from duties added to the rights of
accepting or rejecting an offer, receiving the item and of joining a group to participate
in a wholesale. It uses the FIPA Propose protocol and the Deal protocol to interact
with the other User_Agent playing the roles Seller_AgRole or Mediator_AgRole, in
order to achieve its goal. The definition of which agent role it will interact with is
given by the defined relationships. The roles Mediator_AgRole and Member_AgRole
are the ones the agent must choose to participate in a wholesale.

The agent role Buyer_AgRole is owned by an organization called
Supermarket_Org. This organization can be modelled as described in . There are two
agents that may play roles inside it (User_Agent and System_Agent). It is registered in
the Supermarket_Env, the environment where the organization inhabits.
Supermarket_Org owns the roles Seller_AgRole, Buyer_AgRole, Member_AgRole,
Mediator_AgRole, and Verifier_AgRole. Moreover, the organization is associated
with some objects such as Item, Offer and Proposal.

() (){ }
{ }=

∈•=
roles_init

Ownershiprole,orgrole,orgsecondroles

nAggregatio,tionSpecializa

,Play,Ownership,Inhabit
:ipsrelationsh

Register

Axiomaxioms

AgentClass

AgentClass

P :

names oflist

OrganizationClass

Init

() (){ }
{ }=

∈•=
roles_init

Ownershiprole,orgrole,orgsecondroles

nAggregatio,tionSpecializa

,Play,Ownership,Inhabit
:ipsrelationsh

Register

Axiomaxioms

AgentClass

AgentClass

P :

names oflist

OrganizationClass

Init

 AgentZ: Extending Object-Z for Multi-agent Systems Specification 135

Fig. 7. AgentClass structure example

Fig. 8. AgentRoleClass structure example

{ }
{ }
{ }

{ }
()
() () nAggregatiooleMember_AgRself,,gRoleMediator_Aself,

nAssociatiooleSeller_AgRself,

le_PlanbuyWholesaPlan;buyRetail_plans

ActAgentjoinGroup_,m_ActAgentreceiveIte

Agent,reject_ActAgent,accept_Act
dutiesrights

m_ActAgentlookForIteduties

buyItemgoals

posalCounterPro Proposal, ffer,WholeSaleO r,RetailOffe,Itembeliefs

rotocolDealWith_P;A_ProtocolProposeFIP

_NamePlan:plans

ameActAgent_N:rights,duties

Goal:goals

Belief:beliefs

∈
∈

=

∪=

=
=
=

P

P

Buyer_AgRole

{ }
{ }
{ }

{ }
()
() () nAggregatiooleMember_AgRself,,gRoleMediator_Aself,

nAssociatiooleSeller_AgRself,

le_PlanbuyWholesaPlan;buyRetail_plans

ActAgentjoinGroup_,m_ActAgentreceiveIte

Agent,reject_ActAgent,accept_Act
dutiesrights

m_ActAgentlookForIteduties

buyItemgoals

posalCounterPro Proposal, ffer,WholeSaleO r,RetailOffe,Itembeliefs

rotocolDealWith_P;A_ProtocolProposeFIP

_NamePlan:plans

ameActAgent_N:rights,duties

Goal:goals

Belief:beliefs

∈
∈

=

∪=

=
=
=

P

P

Buyer_AgRole

User_Agent

Init
()

() ()

{ }
{ }

{ }
{ }

{ }
()
()()()(){ } PlayoleMember_AgR,self,gRoleMediator_A,self,oleSeller_AgR,self,leBuyer_AgRo,self

Inhabit_EnvSupermarket,self

nAssociatio,Play,Inhabitipsrelationsh

oleMember_AgRgRole,Mediator_Ainit_rolesroles

oleSeller_AgRle,Buyer_AgRoinit_roles

Itemsdeal_With_goals

posalCounterProProposal,ffer,WholeSaleOr,RetailOffe,Itembeliefs

_AgRoleSellerInitRoleleBuyer_AgRoInitRoleinit_rolesInitRole

_EnvSupermarketself,Register

le_PlanbuyWholesaPlan;buyRetail_

ActAgentjoinGroup_

;m_ActAgentreceiveIteAgent;reject_Act

Agent;accept_Act;m_ActAgentlookForIte

meAgRoles_Na:init_rolesroles,

ipRelationsh:ipsrelationsh

Goal:goals

Belief:beliefs

⊂
∈

=
∪=

=
=
=

=∨=•∈

P

User_Agent

Init

User_Agent

Init
()

() ()

{ }
{ }

{ }
{ }

{ }
()
()()()(){ } PlayoleMember_AgR,self,gRoleMediator_A,self,oleSeller_AgR,self,leBuyer_AgRo,self

Inhabit_EnvSupermarket,self

nAssociatio,Play,Inhabitipsrelationsh

oleMember_AgRgRole,Mediator_Ainit_rolesroles

oleSeller_AgRle,Buyer_AgRoinit_roles

Itemsdeal_With_goals

posalCounterProProposal,ffer,WholeSaleOr,RetailOffe,Itembeliefs

_AgRoleSellerInitRoleleBuyer_AgRoInitRoleinit_rolesInitRole

_EnvSupermarketself,Register

le_PlanbuyWholesaPlan;buyRetail_

ActAgentjoinGroup_

;m_ActAgentreceiveIteAgent;reject_Act

Agent;accept_Act;m_ActAgentlookForIte

meAgRoles_Na:init_rolesroles,

ipRelationsh:ipsrelationsh

Goal:goals

Belief:beliefs

⊂
∈

=
∪=

=
=
=

=∨=•∈

P

()
() ()

{ }
{ }

{ }
{ }

{ }
()
()()()(){ } PlayoleMember_AgR,self,gRoleMediator_A,self,oleSeller_AgR,self,leBuyer_AgRo,self

Inhabit_EnvSupermarket,self

nAssociatio,Play,Inhabitipsrelationsh

oleMember_AgRgRole,Mediator_Ainit_rolesroles

oleSeller_AgRle,Buyer_AgRoinit_roles

Itemsdeal_With_goals

posalCounterProProposal,ffer,WholeSaleOr,RetailOffe,Itembeliefs

_AgRoleSellerInitRoleleBuyer_AgRoInitRoleinit_rolesInitRole

_EnvSupermarketself,Register

le_PlanbuyWholesaPlan;buyRetail_

ActAgentjoinGroup_

;m_ActAgentreceiveIteAgent;reject_Act

Agent;accept_Act;m_ActAgentlookForIte

meAgRoles_Na:init_rolesroles,

ipRelationsh:ipsrelationsh

Goal:goals

Belief:beliefs

⊂
∈

=
∪=

=
=
=

=∨=•∈

P

136 A.A.F. Brandão, P. Alencar and C.J.P. de Lucena

Fig. 9. OrganizationClass structure example

Fig. 10. Example of PlanClass structure

Fig. 11. Example of ActAgent Class structure

We note that in the User_Agent class schema, the user agent has some plans and
associated actions. In the following, we describe the buyRetail_Plan (Fig.), a plan that
agents can use to achieve the goal of buying an item being sold through a retail sale.
This plan is composed of a sequence of actions and has lookForItem_ActAgent as its
initial action ().

lookForItem_ActAgent

()
() tryagain?itemfindresult

?itemfindpre

Item:?item

∨≡
¬≡

lookForItem_ActAgent

()
() tryagain?itemfindresult

?itemfindpre

Item:?item

∨≡
¬≡

Init

Supermarket_Org

Init

Supermarket_Org

Init

Supermarket_Org

()

{ }

()
()()()
()()
()()()
()() nAssociatio

posalCounterPro,self,Proposal,self

,fferWholesaleO,self,rRetailOffe,self,Item,self

Ownership
AgRole_Verifier,self,AgRole_Mediator,self

oleMember_AgR,self,AgRole_Buyer,self,AgRole_Seller,self

;Inhabit_EnvSupermarket,self

AgRole_Verifier,AgRole_Mediator

ole,Member_AgR,AgRole_Buyer,AgRole_Seller
roles

nAssociatio,Ownership,Inhabitipsrelationsh

_EnvSupermarket,selfRegister

ntSystem_Age

User_Agent

⊂

⊂

∈

=

=

()

{ }

()
()()()
()()
()()()
()() nAssociatio

posalCounterPro,self,Proposal,self

,fferWholesaleO,self,rRetailOffe,self,Item,self

Ownership
AgRole_Verifier,self,AgRole_Mediator,self

oleMember_AgR,self,AgRole_Buyer,self,AgRole_Seller,self

;Inhabit_EnvSupermarket,self

AgRole_Verifier,AgRole_Mediator

ole,Member_AgR,AgRole_Buyer,AgRole_Seller
roles

nAssociatio,Ownership,Inhabitipsrelationsh

_EnvSupermarket,selfRegister

ntSystem_Age

User_Agent

⊂

⊂

∈

=

=

{ }

tAgentreceive_Ac Agent,payFor_Act

Agent,accept_Act ,m_ActAgentlookForIte
actions

buyItemgoals

ActAgentactions

Goal:goals

 seq

P:

P

=

=

buyRetail_Plan

{ }

tAgentreceive_Ac Agent,payFor_Act

Agent,accept_Act ,m_ActAgentlookForIte
actions

buyItemgoals

ActAgentactions

Goal:goals

 seq

P:

P

=

=

buyRetail_Plan

 AgentZ: Extending Object-Z for Multi-agent Systems Specification 137

As our focus is not on how the actions are implemented but on its pre-conditions
and results, the lookForItem_ActAgent () just specifies that in order to find an item,
this item must not have been already found. After the action is executed there are two
possible results: either the item was found or the tryagain expression was obtained,
which means that the pre-condition can still be true after the execution of the action.

5 Related Work

There are several research results related to the formal specification of MASs and
most of them target specific system features such as agent communication and agent
behaviour.

Hilaire et al. [5] combine Object-Z and statecharts to specify an MAS since they
understand that each of them, when considered in isolation, lack the expressiveness to
specify the complex features associated with MASs. In this sense, we agree that
Object-Z does not have enough expressiveness to specify MAS. For instance, instead
of combining Object-Z with another existing formalism we have decided to extend it
by augmenting it with new structures in order to support the specification of agent-
related abstractions.

d´Inverno and Luck [6] defined a formal framework for MAS specification using
Z. Their work is general and the formal specification that uses their framework is ad
hoc. In contrast, our work provides a basis for the formalization of MAS-ML models.

Perini et al, [12] combine formal and informal specification to model agent
systems using the Tropos methodology and the Formal Tropos specification. A
Formal Tropos specification extends a Tropos specification by adding annotations and
constraints that characterize valid behaviours of the model. Their work is concerned
with the specification of functional requirements of the model and ours is concerned
with a specification that allows the verification of the design structure and properties.

AgentZ is a formal notation that addresses the systematic design of MAS using the
specific set of modelling constructs defined in MAS-ML and, for this reason, it can be
also used as a rigorous starting point for validation and implementation efforts.

6 Conclusions and Future Work

In this work we have presented the first version of AgentZ, a formal notation that
combines the agent and object-oriented structures proposed in TAO with the formal
notations Z and Object-Z. By defining AgentZ, we have intended to increase the
expressiveness of Z and Object-Z by allowing the encapsulation of the complexity
associated with both agent and object abstractions. Therefore, by using a notation
such as AgentZ, specifications may be shorter and more understandable, and formally
characterize design models.

AgentZ was developed to provide a formal notation that allows the verification
of MASs design models. In principle, it can be used to validate design properties
such as the ones related to the structure of MAS static diagrams, which includes the
relationships and the entity types involved in a specific MAS static diagram (e.g. a

138 A.A.F. Brandão, P. Alencar and C.J.P. de Lucena

class diagram, an organization diagram or a role diagram described in MAS-ML).
In this sense, we believe it should help to improve the quality of the multi-agent
system designs.

While a first version of AgentZ was described in this paper, there are many areas
that need to be explored to improve this initial version. The semantics of AgentZ
must be examined, which includes the definition of the new introduced types. The
definition of a formal mapping between AgentZ models and MAS-ML models,
which was one of the reasons that motivated us to begin the development of
AgentZ, will also be part of our future activities. Finally, there is a need of tools for
AgentZ support.

Acknowledgements. This work is partially supported by CNPq/Brazil under the
project “ESSMA”, number 5520681/2002-0 Anarosa A. F. Brandão and Carlos J. P.
de Lucena and by grant No 140179/95-0 from CNPq/Brazil for Anarosa A. F.
Brandão. Paulo Alencar research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), Human Resources Development
Canada (HRDC) and IBM Canada.

References

1. Bauer, B. Müller, J.P. and Odell, J. Agent UML: A Formalism for Specifying Multiagent
Software Systems In: Ciancarini and Wooldridge (Eds) Agent-Oriented Software
Engineering, Springer-Verlag, LNCS vol 1957, 2001.

2. Biddle, J; Thomas, E. Role Theory: Concepts and Research. John Wiley and Sons, New
York, 1966

3. Carrington, D. and Smith, G. Extending Z for Object-Oriented Specifications, 5th
Australian Software Engineering Conference, Sydney, May 1990.

4. Duke, R., King, P., Rose, G., Smith, G. The Object-Z Specification Language: version 1,
Software Verification Research Centre, The University of Queensland, Technical Report
91-01, April 1991.

5. Hilaire, v., Koukam, A., Gruer, P and Müller, J-P. Formal Specification and Prototyping
of MAS, In: Omicini, A et al (Eds) ESAW 2000, LNAI 1972, Springer-Verlag, pp 114-
127, 2000.

6. d’Inverno, M. and Luck, M.: Understanding Agent Systems, Springer Verlag, 2001.
7. Jennings, N. Agent-Oriented Software Engineering. In: Proceedings of the 20th Intl. Conf.

on Industrial and Engineering Applications of Artificial Intelligence, pp 4-10, 1999.
8. Kim, S-K. and Carrington, D. A Formal Mapping Between UML Models and Object-Z

Specifications, In. Bowen,J.P. et al (Eds): ZB 2000, LNCS 1878, pp 2-21, Springer Verlag,
2000

9. Lind, J. MASSIVE: Software Engineering for Multiagent Systems, PhD Thesis, university
of Saarland, 2000.

10. MDA – Model Driven Architecture, http://www.omg.org/mda/
11. Parunak, H. and Odell, J. Representing Social Structures in UML. In: Proceedings of

Agent Oriented Software Engineering, pp 1-16, 2001.

 AgentZ: Extending Object-Z for Multi-agent Systems Specification 139

12. Perini, A., Pistore, M., Roveri, M. and Susi, A . Agent-oriented modelling by interleaving
formal and informal specification, in P. Giorgini, J. Muler and J. Odell (Eds) Modelling
Agents and Multi-Agent-Systems, LNCS 2935, pp 36-52, Springer-Verlag, 2003.

13. Silva, V. and Lucena, C. From a Conceptual Framework for Agents and Objects to a
Multi-Agent System Modelling Language, In: Sycara, K., Wooldridge, M. (Eds.), Journal
of Autonomous Agents and Multi-Agent Systems, Kluwer Academic Publishers, Vol. 9,
issue 1-2, pp.145-189, 2004.

14. Silva, V. , Garcia, A., Brandão, A., Chavez, C., Lucena, C., Alencar, P. Taming Agents
and Objects in Software Engineering, Lecture Notes in Computer Science, vol 2603, 2003.

15. Spivey, J.M. The Z Notation: a Reference Manual, Prentice Hall, 2nd edition, 1992. (on-
line version at http://spivey.oriel.ox.ac.uk/~mike/zrm/ - 14/05/2003)

16. UML – The Unified Modelling Language, http://www.omg.org/uml/
17. Wagner, G. The Agent-Object-Relationship Metamodel: Towards a Unified View of State

and Behaviour, Information Systems, Vol 28, 5, 475 – 504, 2003
18. Wood, M.F. and DeLoach, S.A. An Overview of the Multiagent Systems Engineering

Methodology, In: Ciancarini and Wooldridge (Eds) Agent-Oriented Software Engineering,
Springer-Verlag, LNCS vol 1957, 2001.

19. Wooldridge, M., Jennings, N. and Kinny, David The Gaia methodology for Agent-
Oriented Analysis and Design, Journal of Autonomous Agents and Multi-Agent Systems,
vol 3, pp 285-312, 2000.

20. Wooldridge, M. and Ciancarini, P. Agent-Oriented Software Engineering: The State of the
Art, In: Ciancarini and Wooldridge (Eds) Agent-Oriented Software Engineering, Springer-
Verlag, LNCS vol 1957, 2001.

21. Wooldridge, M. and Ciancarini, P. Agent-Oriented Software Engineering, Handbook of
Software Engineering & Knowledge Engineering Fundamentals, Chang, S. K. (ed), vol. 1,
2001.

22. Zambonelli, F., Jennings, N. and Wooldridge, M. Organizational Abstractions for the
Analysis and Design of Multi-Agent Systems, In: Ciancarini and Wooldridge (Eds) Agent-
Oriented Software Engineering, Springer-Verlag, LNCS vol 1957, 2001.

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 140 – 156, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Incorporating Elements from the Prometheus
Agent-Oriented Methodology in the OPEN Process

Framework

Brian Henderson-Sellers, Quynh-Nhu N. Tran, and John Debenham

Faculty of Information Technology,
University of Technology, Sydney,

PO Box 123, Broadway,
NSW 2007, Australia

numitran@yahoo.com
{brian, debenham}@it.uts.edu.au

Abstract. As part of an extensive research programme to combine the benefits
of method engineering and existing object-oriented frameworks (notably the
OPEN Process Framework or OPF) to create a highly supportive
methodological environment for the construction of agent-oriented information
systems, we have analysed here contributions to the OPF repository of method
fragments from the Prometheus agent-oriented methodology. We have
identified three new Tasks, together with two new subtasks for a pre-existing
Task and one additional Technique. Prometheus has also supplied the OPF with
four new Work Products but no additional Roles or Stages.

1 Introduction

The increasing interest in agents and agent-oriented methodologies requires the
construction of high quality software methodologies. There are an increasing number
of stand-alone methodologies but none of these supports all methodology elements
across the full lifecycle, instead focussing solely on agent-specific issues such as
social interaction, autonomy and reasoning processes. There is also debate as to
whether an agent-oriented methodology should be seen as a new mindset requiring a
brand new approach or whether it can be considered as extending the object-oriented
paradigm and methodology. While the former view has been advocated by e.g.
Tropos [1], we have already shown [2,3] that this view can be accommodated within
an object-oriented framework approach and it is this view that is taken in this paper.

Object-oriented (OO) methodologies do not take into account agency concepts.
Recently, there has been interest in identifying how an object-oriented methodology
might be extended or enhanced to support these newer ideas. Several proposals have
been made. For instance, Gaia [4] takes as its basis the Fusion methodology [5];
ADELFE [6] starts with RUP [7] (although the citation is actually to the Unified
Software Development Process [8]). Such methodologies have a specific and
restricted focus, for instance to a particular lifecycle stage e.g. Tropos [1] has a strong

Incorporating Elements from the Prometheus Agent-Oriented Methodology 141

emphasis on early requirements engineering. Outside their stated scope, however,
they have little or no application. Here, we focus on a comprehensive software
development approach and seek a methodological environment that has the capacity
to be flexible enough to support new ideas as they appear and become accepted as
well as the old, well-established ones [9]. Merging of methodologies has been
addressed from an informal viewpoint [10]; however, a more rigorous and highly
promising approach to offer such support is that of method engineering [11,12,13].

This paper reports on part of an extensive research programme to combine the
benefits of method engineering and existing object-oriented frameworks (notably the
OPEN Process Framework or OPF [14,15]) to create a highly supportive environment
for the construction of agent-oriented information systems. By starting with a
repository of OO method fragments (sometimes called method chunks [16] or process
components1[15]), the research questions relate to the identification of new (or
extended) method fragments necessary to support various flavours of agent-oriented
applications development. To do this, we are examining each of the extant AO
methodologies in turn to see what must be added to the OPF repository so that that
particular AO methodology can be (re)created from the elements in the extended OPF.
In this paper, we focus on the Prometheus AO methodology [17,18,19] to complement
our previous analysis of, inter alia, Tropos [3], Gaia [20] and MaSE [21].

In Section 2, we outline the ideas of method engineering (ME) followed by a brief
summary in Section 3 of our selected OO situational method engineering approach –
that based on the OPF [15]. In Section 4, we describe the basics of Prometheus and
then in Section 5 describe the elements of Prometheus not currently supported in the
OPF and which we therefore propose for addition to the OPF repository.

2 Method Engineering

Method engineering [11,12] is a rational approach to the construction, either fully or
partially, of methods (a.k.a. methodologies) from method fragments typically stored
in a repository. The method itself is constructed by selection of appropriate method
fragments followed by their configuration in such a way as to satisfy the requirements
for the method [22] and create a meaningful overall method [23]. A method that is
targetted at a particular project or environment is known as a situated or situational
method and the means of its derivation known as situational method engineering
(SME) [13].

Ideally, a method engineering approach to process/method construction will utilize
a process metamodel from which current and future method fragments can be
generated by the instantiation rule. These generated fragments will be consistent with
the rules of the metamodel, a rule for instance that might state that a producer (usually
a person) can utilize a work unit (such as a task) in order to product some kind of
work product (e.g. documentation, code). Such rules also automatically impose some
granularity constraints as noted in [23]. A second set of rules and guidelines is needed
to assist in process/method construction [24], an approach that can also potentially be

1 A methodology is a combination of a process and a set of products. We focus on the process

portion. Thus, the words “method”, “methodology”, “process” are taken here effectively as
synonyms.

142 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

automated [25,26]. Here, we call a combination of metamodel and generated method
fragments (stored in a repository) a process framework.

3 The OPEN Process Framework

The OPEN (Object-oriented Process, Environment, and Notation) Process Framework
(OPF) [15] combines a process metamodel and a repository of method fragments
(Figure 1). Elements from the repository are selected and put together to form a
specific situational method. Method elements are related to other method elements
with a possibility value known as a deontic value [14]. Deontic matrices can be
defined for (1) Process/Activity, (2) Activity/Task, (3) Task/Technique, (4)
Producer/Task, (5) Task/Work Product, (6) Producer/Work Product and (7) Work
Product/Language. Deontic values have one of five values ranging from mandatory
through optional to forbidden. This gives a high degree of flexibility to the method
engineer who can allocate different deontic values for any specific pair of method
fragments depending upon the context i.e. the specific project, skills set of the
development team etc. Allocating these deontic values is the responsibility of the
method engineer, perhaps assisted by an automated tool along the lines recently
proposed [25]. This deontic approach to method construction is one of OPEN’s
strengths that make it suitable for a wide range of project types.

When used on a specific project, this is known as a method(ology) instance. A
company-customized OPEN version is then “owned” by the organization – it is their
own internal standard, yet retains compatibility with the global OPEN user
community.

instance of

OPEN Process Framework

Metamodel

Construction

Guidelines

Process

Components

are instances

of

Repository of Predefined

Process Components

Methodology/Process

instance of

OPEN Process Framework

Process Metamodel

Construction
Guidelines

uses

Method
fragments are
instances of

Repository of Predefined
Method Fragments

Methodology

Methodology Instance

instance of

Step 1:

Methodologist/Method
Engineer selects method

fragments, notation and tools,
thereby constructing the in-

house methodology

Step 2:

Project Manager creates
Methodology Instance by

allocating specific resources

instance of

OPEN Process Framework

Metamodel

Construction

Guidelines

Process

Components

are instances

of

Repository of Predefined

Process Components

Methodology/Process

instance of

OPEN Process Framework

Process Metamodel

Construction
Guidelines

uses

Method
fragments are
instances of

Repository of Predefined
Method Fragments

Methodology

Methodology Instance

instance of

Step 1:

Methodologist/Method
Engineer selects method

fragments, notation and tools,
thereby constructing the in-

house methodology

Step 2:

Project Manager creates
Methodology Instance by

allocating specific resources

Fig. 1. The OPF defines a framework consisting of a metamodel and a repository of method
fragments. Construction guidelines are used to create a site-specific or project-specific
methodology, which can then be enacted (as a “methodology instance”) on a specific project
(modified from [27])

Incorporating Elements from the Prometheus Agent-Oriented Methodology 143

3.1 The OPF Metamodel

The OPF metamodel defines five main high level classes of method fragments:

Work Product: “is anything of value that is produced during the development
process” [15]. Work Products are the result of producers (people) executing Work
Units and are used either as input to other Work Units or delivered to a client.
Pragmatically, they also include externally-supplied (e.g. by user) pre-existing
artifacts used as inputs to Work Units.

Producer: “is responsible for creating, evaluating, iterating and maintaining Work
Products” [15], one of its subtypes, important for agent-oriented methodologies, being
Role.

Work Unit: a functionally cohesive operation that is performed by a Producer.
There are three major classes of Work Unit: Activity, Task and Technique.

Language: a medium for documenting a Work Product.
Stage: an identified and managed duration within the process or a point in time at

which some achievement is recognized.

Each of these metaclasses has many subclasses in the detailed metamodel (see
Appendix G of [15]). From each of these subclasses one or more method fragments
are generated by instantiation and stored in the OPF repository (Figure 1)

3.2 Method Fragments in the Repository

Initially, the OPF repository contained about 30 predefined instances of Activity, 160
instances of Task and 200 instances of Techniques (the three main kinds of Work
Unit) as well as multiple instances of Role, Stage, Language etc. Some of these are
orthogonal to all others in their group and some overlap. Consequently, during
process/method construction both association and integration strategies [22] are
needed. For example, there are several Techniques in the repository for finding
objects e.g. textual analysis, use case simulations, CRC card techniques.

The Work Units in the OPF are perhaps the most obvious during the initial stages
of process/method construction. At the highest abstraction level are Activities, which
describe what needs to be undertaken. The overall software development process is
often configured using half a dozen or so of these Activities so they are often (but not
always) the first to be identified. Tasks are then added, which give more detail but
still focus on “what” needs to be done rather than “how” it is do be done. Tasks can
be readily tracked and project managed. They are typically allocated to a small team
over a period of a few days. Scheduling comes from the planning Activities and Tasks
combined with the project management elements embodied in the appropriate Tasks.
Accomplishment of Tasks is by the use of appropriate Techniques. This set of method
fragments is diverse since there are often parallel Techniques for any given Task.

Work Products, including models, documentation and metrics, are also important in
any software development process – although a methodology that is driven by the
desire to produce documentation often fails because it delivers the Work Products for
their own sake. Care must therefore be taken in selection of appropriate method
fragments for Work Products.

Producers bring in the human element (although some producers may be other
software or indeed hardware). Producers play various roles within the methodology.

144 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

It is important to identify these roles rather than the people playing them. A large
number of these are described in the OPF repository although it is a volatile set in
comparison with, say, the instances of the WorkUnit class.

Since its first publication in 1997, several additions have been made to the OPF
repository to enhance its support for

• Web development [28,29]
• Component-based development [30]
• Organizational transition [31,32]
• Usage-Centered Design [27]

As well as some initial work on agent extensions [3,33].
In Section 5 of this paper, we extend the OPF repository even further, to offer

additional support for agent orientation (AO) by extracting new method fragments
from the Prometheus AO methodology [17,18,19].

4 Major Elements of Prometheus

Prometheus is an agent-oriented methodology with three design phases ending in an
implementation phase. First is the systems specification phase in which the basic
functionality of the system is identified, using percepts (inputs), actions (outputs) and
any necessary shared data storage. This is followed by the architectural design stage,
which uses as input the outputs of the previous phase. Here, the agents and their
interactions are identified. Finally, there is the detailed design phase in which the
internal details of each agent are addressed.

Prometheus reuses as much as possible from object technology. In particular, it
uses UML sequence diagrams (as Prometheus’s interaction diagrams) and UML use
cases form the basis for the Prometheus variant named scenario.

Within each of these three major Prometheus phases, we have identified a number
of tasks, together with advice on appropriate techniques and work products generated
or consumed. These are detailed in the following subsections, together with a brief
comment on the stages (Prometheus phases) and languages recommended for use
with the Prometheus approach to building agent-oriented software applications.

4.1 Tasks Characterizing Prometheus

• ‘Identifying Percepts and Actions’: “Percepts” are raw data obtained from the
environment, while “actions” are agents’ mechanisms for affecting the
environment. This task determines how agents interact with their environment.

• ‘Identifying System Goals and Functionality’: This task aims to determine what
the target system should do in a broad sense. Each goal is associated with a (set
of) functionality. Each functionality is described in terms of various attributes
(see Functionality Descriptor Work Product in Section 4.3 for more details).

• ‘Specifying Use Case Scenarios’: This task aims to give a more holistic view of
the system processing (as compared to Functionality Specification which
focusses on particular aspects of the system). This task also helps to identify
further functionality which may otherwise be missed.

Incorporating Elements from the Prometheus Agent-Oriented Methodology 145

• ‘Identifying Agent Types and Instances’: Agent types are identified from
functionality (by grouping closely-related functionality into one agent type). For
each agent type, the designer needs to determine the number of agent instances,
the lifetime of each instance, agent initialisation, agent demise, data
used/produced and the events with which the agent will deal.

• ‘Identifying Events’: Events are derived from percepts. These events are things
that the agent will notice, which will cause it to react in some way.

• ‘Identifying and Specifying Shared Data Objects’: If multiple agents write to
the same shared data objects, this will require significant additional care for
synchronization. At this step, the designer should also decide the appropriate
data-sharing mechanism (e.g. having one agent managing the shared data object
or having each agent storing its own version of the information). This step also
helps to evaluate design, as a good design will minimize shared data objects.

• ‘Specifying Agent Interaction’: This task involves developing Interaction
Diagrams to show the major sequences of interactions between agent types and,
secondly, Interaction Protocols to elaborate each interaction (as shown in
Interaction Diagrams) to show all potential variations.

• ‘Designing Agent Internal Structure’: This task involves a progressive
refinement process in order to define the structure of each agent type by defining
and then elaborating agent capabilities. These are refined in turn until all
capabilities have been defined. At the bottom level, capabilities are defined in
terms of plans, internal events and data.

4.2 Techniques Recommended by Prometheus

• For ‘Identifying Percepts and Actions’: no specific techniques for identifying
Percepts and Actions are identified in the Prometheus documentation.

• For ‘Identifying System Goals and Functionality’: Functionality should be kept
as narrow as possible, dealing with a single aspect or sub-goal of the system. If
functionalities are too broad, they are likely to be less adequately specified
leading to potential misunderstanding. Each functionality should be linked to
some System Goal, while each goal should result in one or more functionality,
although there may not be a one-to-one mapping. The identification of
functionality can be performed in conjunction with Use Case Scenarios
specification: typically some functionalities are defined, these being used to
specify use case scenarios, which in turn identify more functionalities.

• For ‘Specifying Use Case Scenarios’: The central part of a use case scenario is a
sequence of steps describing the scenario. Each step should be annotated with the
name of the functionality responsible and data read/written. These annotations
allow for cross checking with the functionality description. The final set of use
cases should provide a good overview of how the system will work.

• For ‘Identifying Agent Types and Instances’: Functionalities are assigned to
agents based on the criteria of strong coherence and loose coupling.
Specifically, they are grouped to a single agent if they are related, use the same
data and interact frequently with each other. Reasons against groupings include
when functionalities are unrelated, exist on different hardware platforms or

146 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

when there exist security, privacy and modifiability issues. A simple heuristics
test of whether a suitable name for an agent type can be found is useful for
evaluating coherence. A coherent agent should be able to be described by a
single term without any conjunctions. Data Coupling Diagrams and Agent
Acquaintance Diagrams can be used to determine and evaluate the potential
agent groupings. A design with an Acquaintance Diagram where each agent is
linked to every other agent is undesirable.

• For ‘Identifying Events’: Events should be generated as a result of percepts from
the environment, either directly or after processing. The designer should look for
changes between the current and previous percepts, or between believed states of
world and percepts. Events can be externally generated (from percepts) or
internally generated (from messages sent from one agent to another).

• For ‘Identifying and Specifying Shared Data Objects’: Often what at first
appears to be a shared data object can be reconceptualised to be a data source
managed by a single agent, with information provided to other agents when
needed. Alternatively, each agent may have its own version of the information,
without there being any need for a single centralized data object. Data objects can
be specified using traditional OO techniques or database design techniques.

• For ‘Specifying Agent Interaction’: Interaction Diagrams and Interaction
Protocols need to be developed. Interaction diagrams are borrowed directly from
OO design, showing interaction between agents rather than objects. Designers
can directly use the use case scenarios developed earlier to build corresponding
Interaction Diagrams. Wherever there is a step in the use case that involves
functionality from a new agent, there must be some interaction from a previously
involved agent to the newly participating agent. Also, each major environmental
event should have an associated Interaction Diagram. Interaction Protocols are
generalizations of Interaction Diagrams. They define precisely which interaction
sequences are valid within the system. Since protocols must show all variations,
they are often larger than the corresponding Interaction Diagram.

• For ‘Designing Agent Internal Structure’: Functionality (identified from the
task ‘Identifying System Goals and Functionality’) provides a good initial set of
capabilities. Sometimes functionality is required in multiple places - akin to
library routines. Such functionality should also be extracted into a capability
which can then be included in other capabilities or agents. Each capability is
composed of input/output events, data read/written, plans and sub-capabilities.

4.3 Work Products Advocated by Prometheus

• Functionality Descriptor: This is a textual template that describes each
functionality in terms of name, description, percepts, actions, data used/produced
and a brief discussion of interactions with other functionality.

• Use Case Descriptor: This is a textual template that describes the sequence of
steps involved in each use case scenario. Each step is either an incoming
event/percept, message, action or activity (activity is anything within the
functionality, e.g. some kind of computation). All of these elements can be
derived from Functionality Descriptors.

Incorporating Elements from the Prometheus Agent-Oriented Methodology 147

• Agent Class Descriptor: This is a textual template that describes each agent in
terms of functionality included, data used/produced, incoming events, actions,
lifetime, initialisation, demise and other agents with which it interacts.

• Agent Acquaintance Diagram: This diagram type (Figure 2) shows undirected
communication links between agent types. It is developed during the ‘Identifying
Agent Types and Instances’ task to assist ‘Agent Type Identification’.

Planner

Web Searcher

User Agent

DB Searcher

Fig. 2. Example of an Agent Acquaintance Diagram

• System Overview Diagram: This diagram provides a general understanding of
how the system functions as whole. It shows agents, events, shared data objects
and interactions between agents (Figure 3).

Web Searcher

User Agent Planner

DB Searcher

Query

User Profile
Update

User Feedback

Learning
Suggestion

Search Order

Sub-query
Search

Web Add .
Update

DB Update

Cust
DB

Info
DB

Website
Add. DB

Fig. 3. Example of System Overview Diagram

• Agent Interaction Model: including Interaction Diagrams and Interaction
Protocols - both diagrams expressed with AUML Sequence Diagrams (Figure 4).

• Agent Overview Diagram: This diagram provides the top level view of the agent
internals. It shows the top level capabilities of the agent, events or task flows

Agent Name Agent

KEY

Agent Name Agent

KEY

Message

Data

148 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

between these capabilities, as well as data internal to the agent (Figure 5). Further
levels of details will be provided by Capability Diagrams.

• Capability Diagram: Each Capability Diagram describes an agent’s capability in
details. At the bottom level, this diagram contains plans, internal events (which
connect plans) and data used/produced by plans. Capability Diagrams are similar
in style to System Overview (Figure 3) and Agent Overview Diagram (Figure 5),
although plans are constrained to have a single incoming event.

Thanks

Feedback

results

Result

Search Order
Query

Response

[Profile Info

[if status=new]

User User Agent Planner Web
Searcher

n..m Sub-query

Integrated

results
Formatted

suggestion
Learning

[if too many hits]

Refined Hits

Failure

Hits

Planner Web
Searcher

n..m Sub-query

X

Refinement

Fig. 4. Example of Interaction and Protocol Diagrams

Query
Reformulation

Capability

User Profile
Management

Capability

Process User
Feedback
Capability

Query User Profile
Request

User Profile
Update

Topic
Info

Search Order

Learning
Suggestion

User Feedback

Cust
DB

User Profile
Update

Fig. 5. Example of Agent Overview Diagram (for User Agent)

• Plan, Event, Data Descriptor: Each Plan Descriptor defines a plan in terms of

triggering events, messages, actions and plan steps. Each Event Descriptor
defines an event in terms of the event’s purpose, together with data that the event

KEY

Message Data

Capability

Incorporating Elements from the Prometheus Agent-Oriented Methodology 149

carries. Each Data Descriptor defines a data object in terms of its fields and
methods. All three descriptors are expressed as textual templates.

4.4 Stages Used in Prometheus

Cycle: Prometheus uses an iterative process over software engineering phases, thus
fitting the “Iterative, Incremental, Parallel Life Cycle” model of OPEN.

Phases: Prometheus covers System Specification, Architectural Design and Detailed
Design. Outputs of these phases can be directly fed into implementation and testing.
In the context of OPEN, Prometheus supports “Initiation” and “Construction”.

4.5 Languages

For modelling, Prometheus proposes its own set of notation except for the Interaction
Model, which employs the AUML Sequence Diagram [34]. For an implementation
language, it is noted that Prometheus models can be implemented in any
programming language although exemplar implementations have been undertaken
using the JACK Development Platform [35].

5 Adding Support to the OPF Derived from Prometheus

In this section, we outline the various Tasks, Techniques and Work Products that are
proposed in this paper as additions and modifications to the OPEN repository in order
to incorporate agency concerns as identified in Prometheus. These new method
fragments are identified from the literature and proposed here for inclusion into the
OPF method fragment repository.

In total, three new Tasks are identified, together with two new subtasks for a pre-
existing Task. An additional Technique, suitable for agent support, has also
been identified for inclusion in the OPF repository (and one that will need further
extension – not discussed in detail here). Prometheus supplies a total of 5 new Work
Products but no additional Roles or Stages.

Many of the tasks described in Prometheus are already incorporated into the
method fragment library of OPEN, albeit sometimes under a different name. First we
discuss the mappings to existing method fragments (Section 5.1) and then identify
new components for addition to the OPF repository (Sections 5.2 to 5.4).

5.1 Existing Support and Mappings Between OPF and Prometheus

The Prometheus task of ‘Identifying Percepts and Actions’ maps to the Agent OPEN
Tasks: ‘Model the agent’s environment’. Useful techniques here might be ‘Context
Modelling’, ‘CRC Card Modelling’ and ‘Event Modelling’. ‘Identifying Systems
Goals and Functionality’ in Prometheus is paralleled by the set of Requirements
Engineering tasks in OPEN that directly cover this Prometheus task (particularly
OPEN’s ‘Identify Client’s Vision’ and ‘Analyze Requirements’). The OPEN task:
‘Use Case Modeling’ corresponds directly to the Prometheus task of ‘Specify Use
Case Scenarios’.

150 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

The Prometheus task named ‘Identifying Agent Types and Instances’ leads to the
need for a new OPF Task which we name ‘Construct the Agent Model’ (see Section
5.2). Similarly, Prometheus’s ‘Identifying and Specifying Shared Data Objects’
identifies a gap which we fill with a new OPF Task: ‘Specify shared data objects’.
On the other hand, there is some high level support in Agent OPEN’s Task: ‘Model
the agent environment’ for both events and percepts. However, we recommend
supporting these more substantially through the introduction of two new subtasks (see
Section 5.2 for details).

For Prometheus’s ‘Specifying Agent Interaction’, there is a good mapping to
OPEN’s Task: ‘Construct the object model’/Technique: ‘Interaction modelling’ [15]
plus Task: ‘Determine agent interaction protocol’ [33]; whereas the Prometheus’s
‘Designing Agent Internal Structure’ requires the addition to the OPF repository of a
new task called ‘Design agent internal structure’.

These task mapping are summarized in Table 1.

Table 1. Mappings of tasks between Prometheus and OPF

Name in Prometheus Name in OPF

1) Tasks
Identifying percepts and actions Model the agent’s environment
Identifying systems goals and

functionality
RE Tasks: especially Identify client’s
vision and Analyze requirements

Specify use case scenarios Model use cases
Identifying agent types and instances NEW: Construct the agent model
Identifying and specifying shared data

objects
NEW: Specify shared data objects

Specifying agent interaction Construct the object model and
Determine agent interaction protocol

Designing agent internal structure NEW: Design agent internal structure

2) Subtasks
Identifying percepts and actions NEW: Model percepts
Identifying events NEW: Model events
 (both subtasks of Model the agent’s

environment

There are many existing OPF Techniques covering those required by Prometheus.
Techniques to support Prometheus’s ‘Identifying percepts and actions’ include
‘Context modelling’, ‘CRC card modelling’ and ‘Event modelling’. For ‘Identifying
System Goals and Functionality’, OPF already has ‘Hierarchical task analysis’. For
‘Specifying Use Case Scenarios’, OPF offers Technique: ‘Scenario development’.

For ‘Identifying Agent Types and Instances’ in Prometheus, the OPF has some
support, although inadequate in parts. While existing Techniques of ‘Cohesion
measurement’ and ‘Coupling measurement’ offer support, the existing Technique:

Incorporating Elements from the Prometheus Agent-Oriented Methodology 151

‘Intelligent agent identification’ covers only the need for agents and agent modelling
notation and significant extension will be required. OPEN also offers various
techniques for OO class identification/modelling (such as ‘Abstract Class
Identification’ and ‘Class Naming’), which can be extended/adapted for the
identification of agent classes. The extension should take into account the major
differences between OO classes and agent classes, for example, agent classes are
generally more coarse-grained than OO classes (thus, the ‘Granularity’ Technique in
the OPF repository should be extended to account for this difference).

For ‘Identifying Events’ in Prometheus, the OPEN Technique: ‘Event Modelling’
is directly applicable. OPEN currently offers no techniques for the Prometheus task of
‘Identifying and Specifying Shared Data Objects’. Support for ‘Specifying Agent
Interactions’ is partial through the OPF Techniques of ‘Interaction modelling’ and
‘Collaboration analysis’. However, these need extension. The Agent OPEN [33]
Techniques of ‘Contract nets’ and ‘Market mechanisms’ may also be useful. Finally,
we need to propose a new Technique (Section 5.3) to support the Prometheus task of
‘Designing Agent Internal Structure’. This we name ‘Agent internal design’.

For work products, Prometheus uses a suite of diagrams that include both new
diagrams and extensions of existing (often UML) diagrams. We therefore propose the
addition of four new diagram types to the OPF method fragment repository. Those that
can be classified as belonging to the suite of OPF Static Architecture Diagrams are
Agent Model; Agent Acquaintance Diagram; Agent Overview Diagram.

The agent interaction model has two components: a standard Interaction Diagram
and a new Protocol Diagram. Other new diagrams are the Functionality Descriptor
and Capability Diagrams. The Capability Diagram is essentially the same as that
proposed in Tropos – a diagram already been incorporated into the OPF repository
[3]. The Agent Overview Diagram is essentially a Context Diagram so no new work
product is proposed here for the OPF repository. Finally, there is a close mapping
from the Prometheus Use Case Descriptor to the OPF Use Case Specification.

5.2 New Tasks

Although these tasks are a contribution to the OPF, commonly found in several AO
methods, we itemize them here since they are currently missing from the repository.

TASK NAME: Construct the agent model
Focus: Static architecture
Typical supportive techniques: Intelligent agent identification, Control architecture
Explanation: An analogue of the “object model” as the main description of the static
architecture needs to be constructed. This model shows the agents, their interfaces
and how they are connected both with other agents and other objects.

TASK NAME: Design agent internal structure
Focus: Internal structure of agents
Typical supportive techniques: Agent internal design, 3-layer BDI model, Reactive
reasoning
Explanation: Using an appropriate model for the internal agent architecture, such as
the BDI model, the internal structure of each agent needs to be determined. If a
hybrid architecture is used, then both ECA rules (event-condition-action rules) and I-

152 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

rules (inference rules) may be needed. If using a BDI architecture, then goals and
plans will be needed (see Agent OPEN Tasks: ‘Model goals’ and ‘Model plans’ [3].
When using Prometheus, high level capabilities are identified and iteratively
decomposed, finally resulting in plans, internal events and data.

TASK NAME: Specify shared data objects
Focus: Data storage
Typical supportive techniques: appropriate database-focussed techniques
Explanation: Synchronization is required if several agents write to the same data
storage object. Appropriate data-sharing mechanisms are needed.

Finally, two subtasks are recommended for addition to the existing Task: Model the
Agent’s Environment

Subtask: Model Percepts. This task focuses on modelling the percept component of
the agent’s environment.

Subtask: Model Events. This task focuses on modelling the events that result from
changes in the environment, which are then recognized by the agent itself as an input
to its own internal reasoning.

5.3 New Technique

Although this is a contribution common to many AO methods, we itemize it here in
the context of it being currently missing from the OPF repository.

TECHNIQUE NAME: Agent internal design
Focus: Internal features of an agent
Typical tasks for which this is needed: Design agent internal structure
Technique description: The fine detail of an individual agent must be described in
terms of its attributes and operations (as for objects) but more importantly in terms of
its goals, plans, capabilities, responsibilities, events responded to and pre- and post-
conditions.
Technique usage: Document each of these internal characteristics (or features) of
every agent in the system. The detail should be sufficient for coding to take place
easily from these design specifications.
Deliverables: Capability diagram

5.4 New Work Products

Although these Work Products are not unique to Prometheus, they are currently
missing from the OPF repository and are therefore documented here.

NAME: Functionality Descriptor
OPF CLASSIFICATION: Requirements set of work products
RELATIONSHIP TO EXISTING WORK PRODUCT: None
BRIEF DESCRIPTION: This is a textual template describing the functionality in
terms of name, description, percepts, actions, data used/produced and a brief
discussion of interactions with other functionality.

NAME: Agent structure diagram
OPF CLASSIFICATION: Static Architecture diagrams

Incorporating Elements from the Prometheus Agent-Oriented Methodology 153

RELATIONSHIP TO EXISTING WORK PRODUCT: extension of static structure
diagram
BRIEF DESCRIPTION: This diagram describes the internal structure of an individual
agent. It needs to explain how inputs are received (events), thus linking to the
Functionality Descriptor, what goals and plans are possessed and how reasoning is
accomplished. If using a BDI model for the agent architecture, modified following
[36], then an extension to the UML class notation might look like the proposal in
Figure 6 in which the additional boxes already supported in the UML are utilized here
for agent, rather than object, concepts.

Classifier

Agent

Responsibility

Goals

Beliefs

Commitments

has

with metamodel

goals

beliefs

plans

Agent Name

attributes

operations

responsibilities

Plans

commitments

Classifier

Agent

Responsibility

Goals

Beliefs

Commitments

has

with metamodel

goals

beliefs

plans

Agent Name

attributes

operations

responsibilities

Plans

commitments

Fig. 6. One proposal for extended UML notation for an individual agent plus the underpinning
metamodel fragment It is not yet clear whether the attributes and operations are valid features
of an agent (e.g. [37]). Since these are derived from the UML Classifier, their rejection would
negate the generalization relationship between Agent and Classifier

NAME: Agent acquaintance diagram
OPF CLASSIFICATION: Static Architecture diagrams
RELATIONSHIP TO EXISTING WORK PRODUCT: modification of a collaboration
diagram
BRIEF DESCRIPTION: The agent acquaintance diagram is a simplified version of a
UML V1.4 collaboration diagram. It shows the agents and connectivity without
necessarily specifying directionality of connections.

NAME: Agent protocol diagram
OPF CLASSIFICATION: Dynamic Behaviour diagrams
RELATIONSHIP TO EXISTING WORK PRODUCT: None
BRIEF DESCRIPTION: Agent protocols are shown using a UML Sequence Diagram.
This diagram complements a standard sequence diagram to show agent interactions.
Together, these two diagrams constitute the Agent Interaction Model.

NAME: Agent overview diagram
OPF CLASSIFICATION: Static Architecture diagrams

154 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

RELATIONSHIP TO EXISTING WORK PRODUCT: extension of UML object model
BRIEF DESCRIPTION: A high level diagram showing capabilities of the agents,
events between these capabilities and any internal data. This top level diagram forms
the basis for further expansion (addition of detail) into a number of Capability
Diagrams [1,3].

6 Summary and Conclusions

As part of an extensive research programme to combine the benefits of method
engineering and existing object-oriented frameworks (notably the OPF) to create a
highly supportive methodological environment for the construction of agent-oriented
information systems, we have analysed here contributions from the Prometheus AO
methodology. We have identified three new Tasks, together with two new subtasks
for a pre-existing Task. One additional Technique has also been identified for
inclusion in the OPF repository plus one additional Technique that will need further
extension – not discussed in detail here. Prometheus has also supplied the OPF with
four new Work Products but no additional Roles or Stages.

As part of an ongoing projects, we are analysing individual AO methodologies to
identify missing fragments prior to undertaking a full integration across all AO
methodologies where we will identify any overlaps and omissions.

Acknowledgements

We wish to acknowledge financial support from the University of Technology,
Sydney under their Research Excellence Grants Scheme. This is Contribution
number 04/03 of the Centre for Object Technology Applications and Research.

References

1. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J. and Perini, A., 2003, Tropos:
an agent-oriented software development methodology, Autonomous Agents and Multi-
Agent Systems, 8(3), 203-236

2. Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2003, Evaluating the potential for
integrating the OPEN and Tropos metamodels, Procs. SERP '03 (eds. B. Al-Ani, H.R.
Arabnia, and Y.Mun), CSREA Press, Las Vegas, 992-995

3. Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2004, Enhancing Agent OPEN with
concepts used in the Tropos methodology, Engineering Societies in the Agents World IV.
4th International Workshop, ESAW 2003 (eds. A. Omicini, P. Pettra and J. Pitt), LNAI
Volume 3071, Springer-Verlag, Berlin, 328-345

4. Wooldridge, M., Jennings, N.R. and Kinny, D., 2000, The Gaia methodology for agent-
oriented analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3, 285-312

5. Coleman, D., Arnold, P., Bodoff, S., Dollin, C. and Gilchrist, H., 1994, Object-Oriented
Development. The Fusion Method, Prentice Hall, Englewood Cliffs, NJ, USA, 313pp

6. Bernon, C., Gleizes, M.-P., Picard, G. And Glize, P., 2002, The ADELFE methodology
for an intranet system design, presented at AOIS2002, Toronto, 27-28 May

Incorporating Elements from the Prometheus Agent-Oriented Methodology 155

7. Kruchten, Ph., 1999, The Rational Unified Process. An Introduction, Addison-Wesley,
Reading, MA, USA

8. Jacobson, I., Booch, G. and Rumbaugh, J., 1999, The Unified Software Development
Process, Addison-Wesley, Reading, MA, USA

9. van Slooten, K., Hodes, B., 1996, Characterizing IS development projects, in Procs. IFIP
TC8 Working Conf. on Method Engineering: Principles of method construction and tool
support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall, Great Britain, 29-44

10. Juan, T., Sterling, L., Martellis, M. And Mascardi, V., 2003, Customizing AOSE
methodologies by reusing AOSE features, Procs. AAMAS ’03, ACM Press, 113-120.

11. Kumar, K. and Welke, R.J., 1992, Methodology engineering: a proposal for situation-
specific methodology construction, in Challenges and Strategies for Research in Systems
Development (eds. W.W. Cotterman and J.A. Senn), J. Wiley, Chichester, 257-269

12. Brinkkemper, S., 1996, Method engineering: engineering of information systems
development methods and tools, Inf. Software Technol., 38(4), 275-280.

13. Ter Hofstede, A.H.M. and Verhoef, T.F., 1997, On the feasibility of situational method
engineering, Information Systems, 22, 401-422

14. Graham, I., Henderson-Sellers, B. and Younessi, H., 1997, The OPEN Process
Specification, Addison-Wesley, UK.

15. Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. AN
Introduction, Addison-Wesley, Harlow, Herts, UK

16. Rolland, C. and Prakash, N., 1996, A proposal for context-specific method engineering,
Procs. IFIP WG8.1 Conf. on Method Engineering, 191-208, Atlanta, GA, USA

17. Padgham, L. and Winikoff, M., 2002, Prometheus: A Methodology for Developing
Intelligent Agents, In Procs. Third International Workshop on Agent-Oriented Software
Engineering, at AAMAS'02.

18. Padgham, L. and Winikoff, M., 2002, Prometheus: A Pragmatic Methodology for
Engineering Intelligent Agents. In Procs.Workshop on Agent-oriented Methodologies at
OOPSLA 2002, November 4, 2002, Seattle.

19. Padgham, L. and Winikoff, M., 2004, Developing Intelligent Agent Systems: A Practical
Guide, J. Wiley and Sons, Chichester, 240pp

20. Henderson-Sellers, B., Debenham, J. and Tran, Q.-N.N., 2004, Adding agent-oriented
concepts derived from GAIA to Agent OPEN, Advanced Information Systems
Engineering. 16th International Conference, CAiSE 2004, Riga, Latvia, June 2004
Proceedings (eds. A. Persson and J. Stirna), LNCS 3084, Springer-Verlag, Berlin, 98-111

21. Tran, Q.-N.N., Henderson-Sellers, B. and Debenham, J. 2004, Incorporating the elements
of the MASE methodology into Agent OPEN, Procs. ICEIS2004 (eds. I. Seruca, J.
Cordeiro, S. Hammoudi and J. Filipe), INSTICC Press, Volume 4, 380-388

22. Ralyté, J. and Rolland, C., 2001, An assembly process model for method engineering, in
K.R. Dittrich, A. Geppert and M.C. Norrie (Eds.) Advanced Information Systems
Engineering), LNCS2068, Springer, Berlin, 267-283.

23. Brinkkemper, S., Saeki, M. and Harmsen, F., 1998, Assembly techniques for method
engineering. Proceedings of CAISE 1998, Springer Verlag, 381-400.

24. Rolland, C., Prakash, N. and Benjamen, A., 1999, A multi-model view of process
modelling, Requirements Eng. J., 4(4), 169-187

25. Nguyen, V.P. and Henderson-Sellers, B., 2003, Towards automated support for method
engineering with the OPEN approach, Procs. 7th IASTED SEA Conference, ACTA Press,
Anaheim, USA, 691-696

156 B. Henderson-Sellers, Q.-N.N. Tran, and J. Debenham

26. Saeki, M., 2003, CAME: the first step to automated software engineering, Procs.
OOPSLA 2003 Workshop on Process Engineering for Object-Oriented and Component-
Based Development, Centre for Object Technology Applications and Research, Sydney,
Australia, 7-18

27. Henderson-Sellers, B. and Hutchison, J., 2003, Usage-Centered Design (UCD) and the
OPEN Process Framework (OPF), Performance by Design. Procs. forUSE2003 (ed. L.L.
Constantine), Ampersand Press, Rowley, MA, USA, 171-196

28. Haire, B., Henderson-Sellers, B. and Lowe, D., 2001, Supporting web development in the
OPEN process: additional tasks, Procs. 25th Annual International Computer Software and
Applications Conference. COMPSAC 2001, IEEE Computer Society Press, Los Alamitos,
CA, USA, 383-389.

29. Henderson-Sellers, B., Haire, B. and Lowe, D., 2002, Using OPEN's deontic matrices for
e-business, Engineering Information Systems in the Internet Context (eds. C. Rolland,
S. Brinkkemper and M. Saeki), Kluwer Academic Publishers, Boston, USA, 9-30.

30. Henderson-Sellers, B., 2001, An OPEN process for component-based development,
Chapter 18 in G.T. Heineman and W. Councill (Eds.) Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, Reading, MA, USA, 321-340

31. Henderson-Sellers, B. and Serour, M., 2000, Creating a process for transitioning to object
technology, Procs. Seventh Asia-Pacific Software Engineering Conference. APSEC 2000,
IEEE Computer Society Press, Los Alamitos, CA, USA, 436-440.

32. Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D. and Chow, L., 2002,
Organizational transition to object technology: theory and practice, Object-Oriented
Information Systems (eds. Z. Bellahsène, D. Patel and C. Rolland), LNCS 2425, Springer-
Verlag, Berlin, 229-241.

33. Debenham, J. and Henderson-Sellers, B., 2003, Designing agent-based process systems -
extending the OPEN Process Framework, Chapter VIII in Intelligent Agent Software
Engineering (ed. V. Plekhanova), Idea Group Publishing, 160-190.

34. Odell, J., Van Dyke Parunak, H. and Bauer, B., 2000, Extending UML for agents. In G.
Wagner, Y. Lesperance and E. Yu (eds.), Procs. Agent-Oriented Information Systems
Workshop, 17th National Conference on Artificial Intelligence (pp. 3-17). Austin, TX,
USA.

35. AOS, 2000, JACK Intelligent Agents User Guide, AOS Technical Report, Agent Oriented
Software Pty Ltd, July 2000. http://www.jackagents.com/docs/jack/html/index.html.

36. Henderson-Sellers, B., Tran, N. and Debenham, J., 2005, An etymological and
metamodel-based evaluation of the terms ”goals and tasks” in agent-oriented
methodologies, J. Object Technology, 4(2), 131-150

37. Torres da Silva, V. and de Lucena, C.J.P., 2004, From a conceptual framework for agents
and objects to a multi-agent system modeling language, Autonomous Agents and Multi-
Agent Systems, 9(1-2), 145-189

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 157 – 168, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Preliminary Comparative Feature Analysis of
Multi-agent Systems Development Methodologies

Quynh-Nhu Numi Tran1, Graham Low1, and Mary-Anne Williams2

1 School of Information Systems, Technology and Management,
The University of New South Wales,

New South Wales, Australia
{numitran, g.low}@unsw.edu.au

2 Innovation and Technology Research Laboratory,
Faculty of Information Technology, University of Technology Sydney,

New South Wales, Australia
Mary-Anne@it.uts.edu.au

Abstract. While there are a considerable number of software engineering
methodologies for developing multi-agent systems, not much work has been re-
ported on the evaluation and comparison of these methodologies. This paper
presents a comparative analysis of five well-known MAS-development meth-
odologies. The comparison is based on a feature analysis framework published
previously. This framework allows the comparative analysis to be made on a
variety of evaluation criteria, covering both agent-oriented aspects and system
engineering dimensions. The analysis also compares the methodologies in terms
of their support for the steps in the development process and for agent-oriented
concept modeling.

1 Introduction

Compared to the preceding efforts in system engineering such as object-oriented (OO)
paradigm, the work in agent-oriented (AO) system engineering is still under-
developed. However, with the rapid growth and promise of the agent technology, a
number of methodologies for developing MAS (denoted as “MAS methodologies”)
have been proposed in recent years. This has in turn led to the need to evaluate and
compare them, thereby noting their strengths and weaknesses, and determining which
methodology to use in a particular application.

In a previous publication, we have proposed an evaluation framework for assessing
MAS methodologies [1]. Based on feature analysis approach, this framework provides
a list of evaluation criteria or methodological features to be used as yardsticks to as-
sess MAS methodologies from different dimensions and aspects. This paper presents
an application of this framework to five well-known MAS methodologies: MASE [2],
GAIA [3][4], methodology for systems of BDI agents [5], Prometheus [6], and MAS-
CommonKADS [7]. The objective is to obtain a comparative analysis of the five
methodologies, rather than a detailed analysis of each.

158 Q.-N.N. Tran, G. Low, and M.-A. Williams

The remainder of the paper is organized as follows: section 2 provides an overview
of the feature analysis framework while section 3 gives a summarized description of
the five MAS methodologies. We present the comparative analysis in section 4, with
some conclusions and perspectives in section 5.

2 Feature Analysis Framework

The framework proposed in [1] was developed from the synthesis of various existing
feature analysis frameworks, including those for evaluating conventional system de-
velopment methodologies – namely [8], [9], [10] and [11], and those for evaluating
MAS methodologies – namely [12], [13], [14] and [15]. The framework therefore im-
proves on the existing work by extensively assessing both agent-specific (or MAS
specific) and generic system engineering dimensions. It also pays attention to all three
major components of a system development methodology i.e. process, techniques and
models. The framework’s evaluation criteria are considered representative, case-
generic and centred on the capabilities and usefulness of a MAS methodology. The
criteria are grouped into [1]:

• Process Related Criteria: which assess a methodology’s support for the MAS-
development process (15 criteria);

• Technique Related Criteria: which examine the methodology’s techniques to de-
velop MAS (5 criteria);

• Model Related Criteria: which evaluate the capabilities of the methodology’s mod-
els (21 criteria); and

• Supportive Feature Criteria: which evaluate various high-level methodological ca-
pabilities (8 criteria).

Each criterion in the framework is accompanied by an evaluation question (Table
1). Two criteria, “Steps in the development process” (in Process Related Criteria) and
“Concepts” (in Model Related Criteria), which respectively examine the development
steps supported by a MAS methodology, and the concepts that the methodology’s
models are capable of expressing, require a more comprehensive assessment. Tran et
al. [1] proposed a list of “standard” process steps and concepts that serve as a check-
list for this assessment. This list is presented in Tables 3 and 4 of this paper.

Table 1. Feature analysis framework for evaluating MAS-development methodologies [1]

Process Related Criteria
1. Development lifecycle: What development lifecycle best describes the methodology (e.g. waterfall)?
2. Coverage of the lifecycle: What phases of the lifecycle are covered by the methodology (e.g.

analysis, design, implementation…)?
3. Development perspective: What development perspective is supported (i.e. top-down, bottom-up,

or hybrid)?
4. Application domain: Is the methodology applicable to a specific or multiple application domains?
5. Size of MAS: What size of MAS is the methodology suited for?
6. Agent nature: Does the methodology support agents of any type (i.e. heterogeneous agents), or of

a particular type (i.e. homogeneous agents)?
7. Support for verification: Does the methodology contain rules to allow for the verification and

validation of correctness of developed models and specifications?

 A Preliminary Comparative Feature Analysis 159

8. Steps in the development process: What development steps are supported by the methodology?
9. Comments on the overall strengths/weaknesses of each step: This criterion allows the evaluator

to record any comments on a process step that cannot be recorded anywhere else.
10. Notational components: What models and diagrams are generated from each process step?
11. Definition of inputs and outputs: Are inputs and outputs to each process step defined, with possi-

ble examples?
12. Ease of understanding of the process steps: Are the process steps easy to understand?
13. Usability of the methodology: Are the process steps easy to follow?
14. Refinability: Do the process steps provide a clear path for refining the methodology’s models

through gradual stages to reach an implementation, or at least for clearly connecting the implemen-
tation level to the design specification?

15. Approach towards MAS development: what is the methodology’s
a. generic MAS development approach (e.g. OO-based or knowledge-engineering based)?
b. approach towards using “role” in MAS development?
c. approach in role identification, if the methodology uses “role” in MAS development?

Technique-Related Criteria
16. Availability of techniques and heuristics:

a. What are the techniques to perform each process step?
b. What are the techniques to produce each notational component (i.e. modeling techniques)?

17. Ease of understanding of techniques: Are the techniques easy to understand?
18. Usability of techniques: Are the techniques easy to follow?
19. Provision of examples and heuristics: Are examples and heuristics of the techniques provided?
20. Comments on the strengths/weaknesses of the techniques: This criterion allows the evaluator to

record any comments on the techniques to perform each step or to produce each model.

Model-Related Criteria
21. Concepts: What concepts are the methodology’s models capable of expressing?
22. Expressiveness: How well can each model express these concepts? (e.g. is each model capable of

capturing the concept at a great level of detail, or from different angles?)
23. Completeness: Are all necessary agent-oriented concepts that describe the target MAS captured by

the methodology’s models?
24. Formalization/Preciseness of models: Are the notation (syntax) and semantics of models clearly

defined?
25. Model derivation: Does there exist explicit process/logic and guidelines for transforming models

into other models, or partially creating a model from information present in another?
26. Consistency:

a. Are there rules and guidelines to ensure consistency between levels of abstractions within each
model (i.e. internal consistency), and between different models?

b. Are representations expressed in a manner that allows for consistency checking between them?
27. Complexity: is there a manageable number of concepts expressed in each model/diagram?
28. Ease of understanding of models: Are the models easy to understand?
29. Modularity: Does the methodology and its models provide support for modularity of agents?
30. Abstraction: Does the methodology allow for producing models at various levels of detail and ab-

straction?
31. Autonomy: Can the models support and represent the autonomous feature of agents (i.e. the ability to

act without direct intervention of humans or others, and to control their own states and behaviours)?
32. Adaptability: Can the models support and represent the adaptability feature of agents (i.e. the abil-

ity to learn and improve with experience)?
33. Cooperative behavior: Can the models support and represent the cooperative behavior of agents

(i.e. the ability to work together with other agents to achieve a common goal)?
34. Inferential capability: Can the models support and represent the inferential capability feature of

agents (i.e. the ability to act on abstract task specifications)?
35. Communication ability: Can the models support and represent “knowledge-level” communication

ability (i.e. the ability to communicate with other agents using language resembling human-like
speech acts)?

36. Personality: Can the models support and represent the personality of agents (i.e. the ability to
manifest attributes of a “believable” human character)?

37. Reactivity: Can the models support and represent reactivity of agents (i.e. the ability to selectively
sense and act)?

160 Q.-N.N. Tran, G. Low, and M.-A. Williams

38. Deliberative behavior: Can the models support and represent deliberative behavior of agents (i.e.
the ability to decide in a deliberation or proactiveness)?

39. Temporal continuity: Can the models support and represent temporal continuity of agents (i.e.
persistence of identity and state over long periods of time)?

40. Human Computer Interaction: Do the models represent human users and the user interface?
41. Models Reuse: Does the methodology provide, or make it possible to use, a library of reusable

models?

Supportive Feature Criteria
43. Software and methodological support: Is the methodology supported by tools and libraries (e.g.

libraries of agents, agent components, organizations, architectures and technical support)?
44. Open systems and scalability: Does the methodology provide support for open systems and scal-

ability (e.g. the methodology allows for dynamic integration/removal of new agents/resources)?
45. Dynamic structure: Does the methodology provide support for dynamic structure? (i.e. the meth-

odology allows for dynamic reconfiguration of the system)?
46. Agility and robustness: Does the methodology provide support for agility and robustness (e.g. the

methodology captures normal processing and exception processing, provides techniques to analyze
system performance for all configurations or provides techniques to detect/recover from failures)?

47. Support for conventional objects: Does the methodology cater for the use/integration of ordinary
objects in MAS (e.g. the methodology models the agents’ interfaces with objects)?

48. Support for mobile agents: Does the methodology cater for the use/integration of mobile agents in
MAS (e.g. the methodology models which/when/how agent should be mobile)?

49. Support for self-interested agents: Does the methodology provide support for MAS with self-
interest agents (whose goals may be independent or enter in conflict with other agents’ goals)?

50. Support for ontology: Does the methodology cater for the use of ontology in MAS development
process and/or the inclusion of ontology in MAS development models (i.e. ontology-based MAS
development)?

3 MAS Development Methodologies

The five MAS methodologies selected for the comparative analysis are considered the
most comprehensive, widely referenced and well-documented AO software engineer-
ing methodologies compared to other existing work. Each of these methodologies of-
fers a set of steps, techniques and/or models for the analysis and design of MAS.

Multiagent Systems Engineering - MaSE [2]
This methodology has been applied to numerous graduate-level and research projects.
Its process steps include identifying and organizing system goals, distilling use cases
and elaborating them into sequence diagrams, identifying roles, identifying agent
classes from roles, defining inter-agent conversations, designing agent internals and
specifying MAS deployment details.

The GAIA Methodology [3][4]
GAIA adopts an organization-oriented approach towards MAS development. Its
Analysis phase develops four major models: Preliminary Role Model, Preliminary In-
teraction Model, Environment Model (which describes MAS environment in terms of
abstract resources) and Organizational Rule Model (which specifies rules that affect
the whole MAS).

The Design phase then transforms these models into sufficiently low-level abstrac-
tions, including Complete Role and Interaction Models, Organizational Structure
Model, Agent Model, Service Model (which specifies the services offered by each
agent) and Acquaintance Model.

 A Preliminary Comparative Feature Analysis 161

Methodology for BDI Agents – BDIM [5]
This methodology classifies models into external or internal levels. External models
represent a system-level view of the system and include Agent and Interaction Mod-
els. At the internal level, each model describes an abstract internal component of the
agent, including Belief Model, Goal Model and Plan Model.

The Prometheus Methodology [6]
Prometheus aims to provide a detailed, complete methodology for developing MAS
with BDI-like agents. It consists of three phases:

• System specification: identifies the basic functionalities, percepts, actions and use
case scenarios of the target MAS;

• Architectural design: identifies agents, events, interactions and shared data objects;
and

• Detailed design: designs the internals of each agent. Each agent is composed of
“capabilities”, which are in turn made up of lower-level capabilities, plans, internal
events and data.

The MAS-CommonKADS Methodology [7]
This methodology also extends from CommonKADS, although it takes advantage of
many OO techniques. The guidelines for constructing each model are summarized as
follows:

• Agent Model: Agents are identified using use cases, problem statements, RDD and
CRC techniques.

• Task Model: Tasks are identified and decomposed as in CoMoMAS functional
analysis.

• Coordination Model: Agent interactions are identified from use case scenarios.
Coordination protocols are described by Event Flow Diagrams, State Transition
Diagrams and Message Sequence Charts.

• Expertise Model: Different types of agent knowledge (e.g. domain knowledge, task
knowledge, inference knowledge and problem-solving methods) are specified.

• Organization Model: MAS organization is described in terms of agent aggregation
and inheritance.

• Design Model: Infrastructure facilities, agent architecture, software and hardware
required for MAS implementation are specified.

4 Comparative Analysis

Using the feature analysis framework of Tran et al. [1], the comparative analysis of
the above MAS methodologies was performed for Process Related, Model Related
and Supportive Feature Criteria. The evaluation of Technique Related Criteria is not
presented in this paper, as it entails an in-depth analytical discussion of each method-
ology, which is most relevant when the developer has decided on which particular
methodology to use, or is choosing between a small number of methodologies that
provide the same or similar process steps (thus requiring an investigation of tech-
niques to determine which method is the best in performing these common steps for a

162 Q.-N.N. Tran, G. Low, and M.-A. Williams

particular application). An in-depth comparison of MAS methodologies’ techniques
will be presented in a future paper. Criteria 9, 10, 13, 22 and 27 are also not presented
in this paper for the same reason. Criteria “Steps in the development process” and
“Concepts represented by MAS models” will each be analyzed separately because
each requires an extensive assessment (Tables 3 and 4 respectively).

Process-Related Analysis (Table 2)
Apart from BDIM which does not explicitly specify its lifecycle model, the other
MAS methodologies adopt an iterative, incremental SDLC for their MAS develop-
ment. The documentation of BDIM [5] actually does reveal the need for iterative re-
finements for its models (specifically, the refinement of internal models like Belief,
Goal and Plan Models feeds back to the external models such as Agent and Interac-
tion Models, and vice versa). All methodologies cover only the Analysis (A) and De-
sign (D) phases of the SDLC, except for MAS-CommonKADS that touches on the is-
sues of conceptualization (C) phases.

With regard to the development perspective, GAIA and MASE are top-down (TD),
Prometheus is bottom-up (BU), while BDIM and MAS-CommonKADS are hybrid
(H). We define an AOSE methodology as top down if it starts from the analysis of
high-level elements such as system goals, major functionality, problem statement and
organizational structure, and proceeds to identifying and designing agents as system
components that realize these elements. In contrast, a bottom-up AOSE methodology
begins by analyzing low-level behaviours or tasks of the system, which are then pack-
aged to compose agents. A hybrid approach integrates both approaches by identifying
agents from the consideration of both high-level system goals/organization, as well as
low-level system tasks and responsibilities.

Most MAS methodologies are suitable to all types of application domains and het-
erogeneous agents, except for BDIM and Prometheus that target BDI-like agents.
MaSE and Prometheus are considered supportive of the verification and validation
process, since they provide rules or guidelines to assist the system developers in veri-
fying and validating the developed models. For example, Prometheus suggests that a
good MAS design will have a minimal number of shared data objects captured in its
System Overview Diagram. MaSE, Prometheus and MAS-CommonKADS are also
perceived to be easier to understand and to follow than GAIA and BDIM, thanks to
their detailed instructions on the development process and on each process step. All
methodologies provide a clear path for refining their models through gradual stages to
reach an implementation (or at least for clearly connecting the implementation level to
the design specification).

With regard to the approaches towards MAS development, our assessment is per-
formed on three categories of approaches:

• Generic approach: including OO-based approach and Knowledge-Engineering
(KE) based approach. The former either adapts or extends OO models and tech-
niques, while the latter builds upon techniques from knowledge engineering [16].

• The use of “role”: A MAS methodology can be role-oriented (RO), i.e. using
“roles” as the main abstraction for MAS analysis and design, or non-role-oriented
(NRO), i.e. relying on other constructs such as use cases, enterprise/workflow
models and interactions to develop agents and MASs.

 A Preliminary Comparative Feature Analysis 163

• Approach in role identification: If a methodology is role-oriented, it can identify
roles in the system by following a goal-oriented analysis approach (GO), behav-
iour-oriented analysis approach (BO) or organisation-oriented analysis approach.

The five investigated MAS methodologies can demonstrate the adoption of all of
the above approaches, except for the behaviour-oriented analysis approach for role
identification.

Model-Related Analysis (Table 2)
Compared to other MAS methodologies, MAS-CommonKADS can capture and rep-
resent the highest number and the most diverse AO concepts (i.e. criterion “Com-
pleteness”) thanks to its comprehensive set of models. All five methodologies offer
detailed explanations on their models’ notation and semantics, except for MAS-
CommonKADS which does not provide any notation for its Design model (i.e. crite-
rion “Formalization/Preciseness”). All methodologies, except for MAS-
CommonKADs, offer steps and related techniques to support the transforming of
models into other models (i.e. “Model Derivation” criterion).

“Consistency” criterion is assessed in terms of two questions:

• whether there are rules and guidelines to ensure consistency between levels of ab-
stractions of a model/diagram or between different models/diagrams; and

• whether the models/diagrams are expressed in a manner that allows for consistency
checking between them.

As shown in Table 2, methodologies that offer the highest support for consistency as-
surance are MaSE and Prometheus. All methodologies, however, encourage their models
to be developed at various levels of details and abstractions (i.e. “Abstraction” criterion).

Agent characteristics that all five MAS methodologies can support and model are
modularity, autonomy, agent cooperative behaviour, “knowledge-level” communica-
tion ability, reactivity and deliberative behaviour. This finding is desirable, consider-
ing the significance of these constructs in MAS analysis and design. Constructs that
most methodologies overlook are agent adaptability, agent personality, agent temporal
continuity, and sub-system interactions.

All five methodologies make it possible to reuse the developed models, e.g. Exper-
tise Models of MAS-CommonKADS can be reused by agents with similar task infer-
ence requirements [7].

Supportive Feature Analysis (Table 2)
The five investigated methodologies appear to focus merely on the development of
typical, simple MASs, without paying much attention to add-on capabilities of MAS such
as openness/scalability, software tool, agility and robustness. No methodologies address
the use of mobile agents in MAS. Only GAIA explicitly supports the development of
MASs with self-interested agents1. Despite its significance in MAS design and operation,
ontology is not supported nor used by most MAS methodologies. Only MAS-
CommonKADS briefly involves ontology in its development process, particularly in the
modelling of agent “domain knowledge”. It also acknowledges that ontology servers
should be part of the infrastructure facilities to be designed for the agent network.

1 This issue is addressed in the updated version of GAIA [4].

164 Q.-N.N. Tran, G. Low, and M.-A. Williams

Table 2. Comparative analysis results

Evaluation Criteria MaSE GAIA BDIM Prome-
theus

MAS-
CommonKADS

Process Related Criteria

Development lifecycle
Iterative
across all
phases

Iterative
across all
phases

Not specified Iterative
across all
phases

Risk-driven &
component-based

Coverage of the lifecycle A & D A & D A & D A & D C, A & D
Development perspective TD TD H BU H
Application Domain Any Any Any Any Any

Size of MAS 10 agents
 100

agents
Not

specified
Not

specified
Not specified

Agent nature
Hete. Hete. BDI agents BDI

agents
Hete.

Support for verification Yes No No Yes Briefly mentioned
Ease of understanding of
process steps

High High High High High

Usability of the methodol-
ogy

High, except
for internal
agent model-
ing.

Medium.
Missing
many im-
portant
steps

Medium, Lack
of detailed in-
structions for
each step

High High

Refinability Yes Yes Yes Yes Yes

Approach towards MAS
development

• OO
• RO
• GO

• OO
• RO
• OO

• OO
• RO
• N/A

• OO
• NRO
• N/A

• KE
• NRO
• N/A

Model Related Criteria
Completeness High Medium Medium High High
Formalization/
Preciseness of models

High High High High Low

Model derivation Yes Yes Yes Yes No

Consistency
• Yes
• Yes

• Yes
• Yes

• No
• Yes

• Yes
• Yes

• No
• Yes

Ease of understanding High High High High Medium
Modularity Yes Yes Yes Yes Yes
Abstraction Yes Yes Yes Yes Yes
Autonomy Yes Yes Yes Yes Yes
Adaptability No No No No No
Cooperative behaviour Yes Yes Yes Yes Yes
Inferential capability Yes No Yes Yes Yes
Communication ability Yes No Yes Yes Yes
Personality No No No No No
Reactivity Yes Yes Yes Yes Yes
Deliberative behaviour Yes Yes Yes Yes Yes
Temporal continuity No No No No No
Human Computer Inter-
action

No No No Yes Yes

Models Reuse Yes Yes Yes Yes Yes
Supportive Feature Criteria
Software and methodo-
logical support

Yes No No Yes No

Open systems and scal-
ability

No Yes No No No

Dynamic structure No Yes No No No
Agility and robustness No No No Yes No
Support for conventional
objects

No No No Yes No

Support for mobile agents No No No No No
Support for self-interested
agents

No Yes No No No

Support for ontology No No No No Yes

 A Preliminary Comparative Feature Analysis 165

Table 3. Comparative analysis on support for steps in the development process

Steps

M
aSE

G
A

IA

B
D

IM

P
rom

etheus

M
A

S-
C

om
m

onK
A

D
S

Problem Domain Analysis
Identify system goals 3 0 0 0 0
Identify system roles 3 3 2A 0 0
Identify system functionality/tasks 3 3 1 3 2A
Develop use cases/scenarios 3 0 0 3 2B
Produce sequence diagrams 3 0 0 0 2B
Identify design requirements 0 0 0 0 0
Identify agent classes 3 3 3 3 3

Agent Interaction Design
Specify agent interaction pathways 3 3 2A 3 3
Define exchanged messages 3 0 0 1 2B
Specify interaction protocols 3 0 0 3 3
Specify contracts/commitments 0 0 0 0 0
Specify conflict resolution mechanisms 0 0 0 0 0
Specify coordination/control regime (e.g. centralized or hierarchical) 1 0 0 0 0
Specify agent communication language 0 0 0 0 0

Agent Internal Design
Define agent architecture 3 0 0 0 1
Define agent mental attributes (e.g. goals, beliefs, plans…) 0 0 3 3 3
Define agent behavioural interface (e.g. capabilities, services) 0 3 3 3 0

System/Environment Design
Define system architecture/organisational structure 0 0 0 0 0
Specify dynamic agent group formulation / dissolution 0 0 0 0 0
Specify agent relationships (e.g. inheritance, aggregation & association) 0 3 3 0 2B
Specify co-existing non-agent entities 0 3 0 2A 0
Specify infrastructure/environment facilities 0 0 0 0 1
Specify agent-environment interaction mechanism 0 0 0 3 1
Instantiate agent classes 3 1 3 0 0
Specify agent instance location 3 0 0 0 0

Support for Steps in the Development Process (Table 3)
The list of standard MAS-development steps proposed by [1] is used as a checklist to
compare the five MAS methodologies. The support of each methodology for each
step is assessed on a 4-point scale:

0: no support is provided
1: the step is included but no techniques or examples are provided
2A: the methodology provides techniques for performing the step
2B: the methodology provides examples of how the step can be performed
3: the step is discussed with techniques and examples

This scheme of rating allows us to indirectly assess and compare the provision of
techniques and heuristics by the methodologies. Methodologies that are most com-
plete in terms of their support for the development steps are MaSE, Prometheus and
MAS-CommonKADS.

166 Q.-N.N. Tran, G. Low, and M.-A. Williams

Support for Concepts of MAS Models (Table 4)
We will use the list of standard MAS concepts proposed by [1] to compare the five
MAS methodologies. If a MAS methodology can represent or capture a concept in its
models, we can simply give it a tick .

Most concepts in the categories of “problem domain”, “agent properties”, “agent
relationships” and “agent interactions” are supported by most MAS methodologies.
However, “deployment” concepts are overlooked by most methodologies, indicating
their lack of support for MAS deployment issues.

Table 4. Comparative analysis on support for concepts of MAS models

Concepts M
aSE

G
A

IA

B
D

IM

P
rom

etheus

M
A

S-
C

om
m

onK
A

D
S

Problem Domain
System goals
System roles
System functionality/Tasks
Task responsibilities/Procedures
Design requirements
Use case/Scenarios

Agent Properties
Agent classes
Agent instances (including cardinality)
Agent’s roles
Agent’s functionality
Agent’s knowledge/Beliefs
Agent’s plans
Agent’s goals
Agent’s capabilities
Agent mobility

Agent Interaction
Interaction pathways
Exchanged messages
Interaction protocols
Interaction constraints
Conflict resolution mechanisms
Contracts/commitments
Ontology

Agent Relationships
Inheritance
Aggregation
Association

System/Environment
Co-existing non-agent entities
Infrastructure/environment facilities
Organisational structure
Agent-environment interaction
Environment characteristics

Deployment
Agent architecture
System architecture
Location of agent instances
Sources of agent instances

 A Preliminary Comparative Feature Analysis 167

5 Conclusions

In this paper, we have compared five well-known MAS methodologies using the fea-
ture analysis framework proposed in [1]. The comparison takes into account a variety
of evaluation criteria and methodological features, covering from process-related and
model-related aspects to high-level MAS capabilities. We also assessed the capability
of methodologies in terms of their support for steps in the development process, and
for AO concept modelling. This assessment will help developers to decide on the
most appropriate methodology to use in a specific application. However, it should be
noted that, while this paper examines the features (and steps and concepts) of a meth-
odology as independent from each other, some methodologies may offer the features
(or steps or concepts) in combination. Thus, the developer may need to assess these
constructs as a group rather than as independent entities. Future work includes extend-
ing the comparative analysis to many other existing MAS methodologies, in order to
obtain an overall assessment of the current work in AO software engineering.

References

1. Tran, Q.N., Low, G., Williams, M.A.: A Feature Analysis Framework for Evaluating
Multi-agent System Development Methodologies. In Zhong, N., Ras, Z.W., Tsumoto,
S., Suzuki, E. (eds): Foundations of Intelligent Systems – Proc. of the 14th Int. Symposium
on Methodologies for Intelligent Systems ISMIS’03 (2003) 613-617.

2. Wood, M.: Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. MS Thesis, Air Force Institute of Technology, USA (2000).

3. Wooldridge, M., Jennings, N.R. and Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3 (2000)
285-312

4. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Transaction on Software Engineering and Methodology (in press)

5. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems
of BDI Agents. Proc. of the 7th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World (1996) 56-71

6. Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent agents.
Proc. of the 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (2002).

7. Iglesias, C. A., Garijo, M., Gonzalez, J.C., Velasco, J.R.: Analysis and Design of Multi-
agent Systems Using MAS-CommonKADS. In Singh, M.P., Rao, A., Wooldridge, M.J.
(eds.). Intelligent Agents IV (ATAL'97). Springer-Verlag, Berlin (1998)

8. Wood, B., Pethia, R., Gold, L.R., Firth, R.: A Guide to the Assessment of Software
Development Methods. Technical Report CMUSEI-88-TR-8, SEI, Software Engineering
Institute, Carnegie Mellon University (1988)

9. Jayaratna, N.: Understanding and Evaluating Methodologies - NIMSAD A Systematic
Framework. McGraw-Hill, England (1994)

10. Olle, T.W., Sol, H.G., Tully, C.J. (eds.): Information Systems Design Methodologies -
A Feature Analysis. Elsevier Science Publishers, Amsterdam (1983)

11. The Object Agency Inc.: A Comparison of Object-Oriented Development methodologies.
http://www.toa.com/smnn?mcr.html (1995)

168 Q.-N.N. Tran, G. Low, and M.-A. Williams

12. Shehory, O., Sturm, A.: Evaluation of modeling techniques for agent-based systems. Proc.
of the 5th Int. Conf. on Autonomous agents (2001) 624-631.

13. O’Malley, S.A., DeLoach, S.A.: Determining When to Use an Agent-Oriented Software
Engineering Paradigm. Proc. of the 2nd Int. Workshop on Agent-Oriented Software Engi-
neering (AOSE) (2001).

14. Cernuzzi, L., Rossi, G.: On the Evaluation of Agent-Oriented Modelling Methods. Proc.
of the OOPSLA Workshop on Agent-Oriented Methodologies (2002)

15. Sabas, A., Badri, M., Delisle, S.: A Multidimentional Framework for the Evaluation of
Multiagent System Methodologies. Proc. of the 6th World Multiconference on Systemics,
Cybernetics and Informatics (SCI-2002), 211-216.

16. Iglesias, C.A., Garijo, M., & Gonzalez, J.C.: A survey of agent-oriented methodologies.
Proc. of the 5th Int. Workshop on Intelligent Agents V: Agent Theories, Architectures,
and Languages (1999)

CMRadar: A Personal Assistant Agent for Calendar
Management

Pragnesh Jay Modi, Manuela Veloso, Stephen F. Smith, and Jean Oh

Department of Computer Science,
Carnegie Mellon University,

Pittsburgh PA 15213
{pmodi, mmv, sfs, jeanoh}@cs.cmu.edu

Abstract. Personal assistant agents have long promised to automate routine ev-
eryday tasks in order to reduce the cognitive load on humans. One such routine
task is the management of a user’s calendar. In this paper, we describe CMRadar,
a calendar management system that is a significant step towards achieving the en-
during vision of assistant agents. CMRadar is an implemented system with wide-
ranging capabilities for supporting email exchange, multiagent negotiations and
schedule optimization based on user preferences. The motivation is to develop
an end-to-end system for use by real users to obtain data to facilitate learning.
Having now completed an initial prototype which we believe is the first end-
to-end agent for calendar management, we present as contributions our architec-
ture design, the communication language used to tie system components together,
and initial simulation experiments that isolate negotiation cost a key factor to be
logged and predicted in order to improve performance.

1 Introduction

One of the more compelling visions for agents research is the development of “per-
sonal assistant agents” that are tasked with making people and organizations more effi-
cient by autonomously handling routine tasks on behalf of their users [6] [7] [3]. Most
recently, several researchers including ourselves have embarked on a large research
project, called The Radar Project [10], whose overall goal is to develop a personal-
ized agent that is able to assist its user in a wide range of everyday tasks. Within this
larger project, we are concerned with the more focused task of managing a user’s calen-
dar. While aspects of calendar management have been investigated before [9] [11] [12]
[5] [4], in this paper, we present CMRadar, a complete agent with capabilities ranging
from natural language processing of incoming scheduling-related emails, to making au-
tonomous scheduling decisions, to negotiating with other users, to user interfacing and
visualization. Although many research issues remain, we believe CMRadar is the first
end-to-end agent for automated calendar management.

A key contribution of the design of CMRadar is the specification of a basic represen-
tation, called a Template, for communicating calendar scheduling related information.
The Template data structure is used as the language for the communication between
the components in CMRadar and as the “glue” that binds them together. In addition,

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 169–181, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

170 P.J. Modi et al.

Fig. 1. Architecture of a single user’s CMRadar

Templates are also used to normalize unformatted natural language emails into a ma-
chine readable format. We offer the Template data structure as a flexible approach to
the general design of a meeting scheduling agent.

The CMRadar architecture contributes a modular design in which the core schedul-
ing functions of the agent are separated from the multiagent aspects of calendar man-
agement. Rather than an approach that tightly couples schedule optimization and nego-
tiation, CMRadar has a separate Manager component which handles the sending and
receiving of messages from other agents and more generally, manages the negotiation
with others. The Manager then communicates via Templates with a separate Scheduler
component that handles the core optimization problems. We found that this modular
architecture facilitates the integration of existing scheduling systems and indeed, a core
component of CMRadar is the Ozone scheduler [13] originally designed for and used
in several real-world logistics planning domains.

The primary underlying emphasis of the Radar project is to learn to improve per-
formance, adapt to unexpected situations and to customize to different users. The em-
phasis on learning is reflected in our design of the CMRadar architecture in which all
components read and write data to a central knowledge base that can be used by a
separate learning process to provide feedback to the decision making components (see
Figure 1). Indeed, it is the need to collect real-world data to support learning that drives
our development of a complete end-to-end agent.

In anticipation of learning, this paper also presents simulation experiments in which
we isolate negotiation cost as a key factor that should be logged in order to facilitate the
construction of high quality schedules while avoiding high negotiation costs. We present
empirical results in which an agent that remembers negotiation costs and takes them into
account when deciding whether to bump a meeting outperforms simpler approaches.

2 The CMRadar Agent

CMRadar is developed as a personalized agent that interacts with other users or agents.
Figure 1 shows the overall architecture of CMRadar with its functional modules. Dotted
lines represent components not yet implemented. We present two main modules in the
coming sections, namely the Manager and the Scheduler. In this section, we overview
the complete architecture, briefly describing each of the modules.

CMRadar: A Personal Assistant Agent for Calendar Management 171

duration: [“for” | “last”] <digits> [“hr(s)” | “min(s)”]
timeslots: [“at” | “before” | “after”] <time-exp>

: <time-exp> “to” <time-exp>
: <time-exp> “-” <time-exp> //ex: ”10:00 - 11:00”

time-exp: <1-2 digits>”:”<2 digits> //ex: ”10:00”, ”6:00”
: <1-2 digits>”:”<2 digits> <tag>
: <1-2 digits> <tag> // ex: ”10 am”, ”1 pm”

tag: [“am” | “a.m.” | “pm” | “p.m.”]

Fig. 2. Example grammar rules for converting emails to Templates

Extractor: We assume that multiagent interaction in calendar meeting scheduling oc-
curs through email message exchange. The Extractor is responsible for parsing email
messages into a template normalized format representing the meeting request or reply
to a request (see Section 4). The email messages can be sent directly by other Radar
agents or by users in natural language. We have followed research on applying state-
of-the-art natural language parsing techniques,1 as well as successfully defining and
applying special purpose parsing rules for language specific to meeting scheduling.2

Figure 2 shows examples of such domain-specific language parsing rules.
Manager: Calendar management is in its essence a multiagent problem as meetings
involve more than one person. The Manager module in CMRadar explicitly handles the
multiagent aspects of calendar management, including flexible negotiation with other
agents and control of email threads. Meeting scheduling is a complex process depen-
dent on many factors, and different users schedule meetings with other users according
to many different strategies. We view this variety of possible multiagent interactions
similar to a playbook approach that we have previously developed in robot soccer [2].
The Manager can represent and reason about several different multiagent (team) strate-
gies and learn to select the ones that are more effective when interacting with other
specific agents.
Scheduler: The core task of meeting scheduling involves determining times for the
meetings. The Scheduler module in CMRadar handles all the time analysis. It receives
(or initiates) a specific request for a meeting and returns the user’s time availability
by considering the user’s preferences and its calendar with different kinds of commit-
ments. Calendar management is handled by the Scheduler under a rich set of soft and
hard constraints, and agents can reason truthfully and rationally about their preferences
towards optimizing the general social welfare. 3

Calendar Data and Display: A human user is used to maintaining a calendar using
the existing available COTS calendars. Our Calendar Data and Display module aims
at having CMRadar use the same calendar programs. The current system is integrated
with MS Outlook as shown in Figure 3. 4

1 We thank Donna Gates, Lori Levin, and Benjamin Han for their NLP work.
2 We thank Kerry Hannan for her NLP work.
3 We thank Elisabeth Crawford for her initial work on addressing this problem under a game

theoretical approach.
4 We thank Andrew Faulring and Brad Meyers for the integration of CMRadar with MS Outlook.

172 P.J. Modi et al.

Fig. 3. A single user’s CMRadar integrated with MS Outlook

Learning: Learning is necessary because obtaining ill-structured user preferences and
customizing behavior to different users by hand is infeasible. The agent must acquire
much of its required knowledge about its specific user over time through experience.
Although learning is not yet part of the system, the current CMRadar as we present
in this paper is the base step towards a complete CMRadar agent which will be truly
a learning agent. Some initial work on an approach to learning user preferences by
observing meeting scheduling episodes is reported in [8].

3 Template Data Format

A Template is a special-purpose language we have constructed for all the multiagent
communication related to meeting scheduling in CMRadar. For communication with
other agents or humans, templates are converted to and from natural language emails
using the Extractor and Generator. We have found the Template representation to be ex-
tremely flexible for not only inter-agent communication but also for gluing components
together within an agent.

As shown in Figure 4, a Template consists of a number of fields and we discuss
three of the main ones: timeslots, attendants and purposes.

– Timeslots: This is a list of individual time slots, each of which contains a feasi-
ble scheduling window, denoted by earliest-start-time and latest-finish-time, and a
specific desired slot denoted by start-time and finish-time. The priority field is the
preference for this slot relative to other time slots in the template. Each time slot has
an associated status field whose value is taken from {possible, impossible, pending,
confirmed}. The “(im)possible” value is used to indicate the (un)availability of a
time slot, “pending” indicates that a time slot is currently reserved by an on-going
negotiation and finally, “confirmed” indicates that the meeting has been scheduled
and the time slot cannot be used for another meeting without triggering a reschedul-
ing negotiation.

– Attendants: This is a list of all participants of the meeting. Each attendee has an
associated priority level that can be used to indicate the person’s relative importance
to the meeting.

CMRadar: A Personal Assistant Agent for Calendar Management 173

(template
(meeting-id MT5) (msg-id MGS1205)
(timestamp 2003-12-17[15:04 -0500])
(initiator sfs@cs.cmu.edu)
(duration 3600) (location NSH1305)
(time-slots

(time-slot
(earliest-start-time 2003-12-17[15:00 -0500])
(latest-finish-time 2003-12-17[16:00 -0500])
(start-time 2003-12-17[15:00 -0500])
(finish-time 2003-12-17[16:00 -0500])
(priority 1)
(status confirmed)))

(attendants
(attendant (id sfs@cs.cmu.edu) (level 1.0))
(attendant (id mmv@cs.cmu.edu) (level 1.0)))

(purposes
(purpose (predefined-kind project-meeting)

(description “Radar project meeting”)
(special-note nil))))

Fig. 4. Example of a CMRadar template

– Purposes: This field is used to hold general text related to the meeting. Of note
is the predefined-kind field which references an existing taxonomy of meetings in
the knowledge base, e.g., project-meeting, faculty-meeting, advisor-meeting, etc.
This field is used by the Scheduler to inform scheduling decisions, e.g., prefer to
schedule faculty-meetings on Friday.

We have found in the development of CMRadar that this template-based communi-
cation is notable for its flexibility where a Template can be interpreted according to the
context of the current negotiation. For example, when an agent receives a new template
containing a time slot with status “pending”, it is interpreted as a proposal to meet at
that time. Conversely, when an agent receives a template that is a reply to a previous
proposal containing a time slot with status “pending”, the agent interprets it as an affir-
mative reply to its previous request. Templates are currently used for single occurrence
meetings. Representation of repeating meetings, i.e., “Every Monday at 2:00 pm” is not
yet available, but we envision extending the template to define a set of keywords such
as “every”, “every other”, “monthly”, etc, to represent this type of meeting.

4 Manager

The purpose of the manager is to interact with other users and agents in service of
scheduling meetings. These interactions can be very complex requiring sophisticated
decision making by the agent. To illustrate the complexity of the problem, we describe
a meeting scheduling episode between four users shown in Figure 5 which highlights
many of the key decisions to be made by an agent.

174 P.J. Modi et al.

Fig. 5. Example of a complex negotiation

The Y-axis in Figure 5 shows four users each with a level of priority as shown in
parentheses. The priority of a user represents his or her rank relative to others in the
organization. At time t1, User 3 proposes (via an email message) to User 4 a meeting
M1 at 10 am. Although the calendars of each agent are not shown, let us assume that
User 4 has a meeting M2 already confirmed with Users 1 and 2 for 10 am. Because
User 3 has a high priority, User 4 wishes to accommodate User 3’s request and so tries
to reschedule meeting M2 to another time. At t2 and t3, User 4 sends proposals to
reschedule M2 for 12 pm. At t4, we see that User 1 enters into negotiations with others
to attempt to accommodate User 4’s request, while at t5, User 2 responds to User 4.
At t6, User 4 receives a request for a new meeting. At t7, User 1 responds to User 4 by
counter proposing a range of times, indicated preferences but not a hard constraint. User
4 chooses a time within the given range and re-proposes to User 2 (the other attendee
of M2). At t9, User 2 responds affirmatively and at times t10,t11,t12 User 1 is able to
finally confirm both meetings M1 and M2.

To successfully execute this scenario requires the following key competencies.

– Multiple Thread Management: A key challenge is the management of multiple
inter-linked negotiation threads. Indeed, performing such “multi-linked negotia-
tions” [14] effectively is an outstanding research issue in multiagent systems. As
illustrated by the interactions between meeting M1 and M2 in our scenario, the de-
cision to accept a meeting proposal for a given time may depend on the result of
other negotiations. Furthermore, others may not respond immediately to requests
or may never respond at all. The agent must be able to keep track of the status of
different negotiation threads and their interactions and make timely decisions.

– Context-Dependent Negotiation Strategies: The agent must be flexible and able
to adapt its decision making depending on the context of the current meeting nego-
tiation and its participants. For example, we saw that User 4 chose to accommodate
User 3’s request by bumping meeting M2 which resulted in a renegotiation with
others. In other scenarios, it may be better to refuse User 3’s proposal. Indeed,
this type of decision cannot be a static one but must take into account the current
context. The appropriate strategy to use in a given situation depends on very rich
context information including local user preferences, the other participants of the

CMRadar: A Personal Assistant Agent for Calendar Management 175

meeting, the history of the negotiations with those people, and the history of the
current negotiation itself.

– Explanation: The agent must be able to keep the user informed of the status of
on-going negotiations and explain scheduling decisions when asked. For example
in our scenario, if User 4 queries her agent as to why meeting M2 has been resched-
uled, the agent should be able to respond that it was due to request for a meeting
M1 from User 3. This competency is crucial for usability and trust by humans.

In our current system, the Manager responds to requests for meetings on its
user’s behalf by querying the Scheduler (described in the next section) for free
time slots. The Manager can display and update the status of meetings via the MS
Outlook Calendar interface. The Manager currently uses a simple fixed negotiation
strategy in which an initiator always proposes a single time slot and a receiver either
accepts it or rejects it in which case the initiator re-proposes. Limited forms of
rescheduling decisions are made where lower priority meetings are bumped in favor
of higher priority ones. In next steps, we will expand these capabilities with more
sophisticated negotiation strategies and learn to adaptively choose the appropriate
negotiation strategy using a playbook strategy [2].

5 Scheduler

The Scheduler is the component within CMRadar responsible for representing and man-
aging the user’s calendar. Whereas the Manager handles the negotiation with other cal-
endar agents, the scheduler reasons about the user’s constraints and preferences to de-
termine the best options in a given meeting context. The CMRadar Scheduler has been
built using the Ozone [13], an incremental, constraint-based scheduling framework pre-
viously used to develop a number of complex logistics planning applications [1]. Ozone
is designed specifically from a continuous scheduling mindset, where schedules evolve
incrementally over time as new requirements are received, priorities change and un-
expected conflicts arise. This orientation makes it ideally suited for the problem of
calendar management.

Within CMRadar, the Scheduler provides basic support for both (1) responding to
meeting requests and (2) assisting in initiation of meeting requests. In both cases, the
action of the Scheduler is to generate options that are consistent with the constraints
specified in the triggering message and maximize satisfaction of known user prefer-
ences. In more detail, the Scheduler’s response to a meeting request (originating either
from another agent or the user herself) proceeds in three steps (see Figure 6):

– Generate feasible meeting options: The input meeting request template specifies
a set of acceptable time periods (in the simplest case, an earliest start time estm
and a latest finish time lftm) together with any constraints on meeting duration.
By default, a feasible option is any time slot that satisfies these constraints and is
currently not booked for another purpose. If these constraints yield no options, the
Scheduler will relax the constraint that existing meetings must be respected, and
consider pre-emption of lower priority meetings (currently a function of attendees
and meeting type). Other more complex resolution strategies (e.g., shrinking the
durations of one or more existing meetings) are also possible.

176 P.J. Modi et al.

9 10 11 12 1 2 3 4 5 6

12/18/03

9 10 11 12 1 2 3 4 5 6

a)

9 10 11 12 1 2 3 4 5 6

c)

Valueslot = w1•pref1 + w2•pref2 + …wn•prefnb)

Fig. 6. Responding to a Request

– Collect and evaluate preferences: The scheduler maintains representations of var-
ious meeting attendants (including the user) , meeting groups, meeting types, etc.,
which provides a backbone for organizing known meeting preferences. Using the
parameters of the template as indicies into this representation, the set of preferences
relevant to the request are collected. Each option is then evaluated and assigned a
rating (discussed in more detail below), indicative of how well each satisfies this
set of preferences.

– Select option(s): According to the current response strategy in force, the highest
valued option or the n highest valued options are returned.

As suggested above, a preference assigns a utility to a given meeting option, re-
flective of how well it is satisfied. Utilities are defined to span the range [−1, 1], with 1
implying that the preference is completely satisfied, 0 that it is neutral, and -1 indicating
that the option is intolerable. A preference also has an intrinsic importance in relation
to other preferences, a number between 0 and 1. In a given option evaluation context,
the importance values of all relevant preferences are normalized to produce the set of
weights for computing the overall rating of a given option (see Figure 6). One aspect
of this normalization involves striking a balance between those preferences held by the
user and those held by other meeting participants.

The set of preferences that must be accounted for in meeting scheduling are quite
diverse, and we have devised representations that allow specification of several broad
classes. In addition to simple interval preferences (e.g., I prefer to meet from 2:00PM
to 3:00PM, piece-wise linear curves can be used to specify more complex time-of-day
preferences (e.g., afternoon is best, late morning is acceptable but never before 9:00
AM). More interesting are so-called dynamic preferences, which depend on the current
state of the user’s calendar and change as the calendar schedule evolves.

Figure 7 gives an example of a dynamic scheduling preference - a preference for
scheduling meetings back to back. On the left, the utility curve of the preference is
shown, indicating the level of satisfaction of the preference to be a function of the per-
centage of total meetings over a given horizon that fall adjacent to the option (i.e., time
slot) under consideration. (In this case, adjacency is defined to tolerate some, presum-
ably small, time gaps.) On the right of Figure 7, a three meeting schedule is displayed
to show the preference’s utility for different options. The preference value for the time

CMRadar: A Personal Assistant Agent for Calendar Management 177

1

0
0 1
of adjacent meetings / # of total meetings

Back-to-Back-preference
of adjacent meetings / total # of meetings

TIME

1

0
Mtg1 Mtg2 Mtg3

(adjacent m1 m2):
(0 = m1st – m2et = T) V (0 = m2st – m1et = T),
where T: ignorable time gap between the two meetings

Fig. 7. Back-to-Back Preference

slot between Meeting 1 and Meeting 2 is highest because it will make all four meetings
back to back.

6 Empirical Results in Simulation

We investigate the effect of different scheduling strategies on system performance in
a simulation setting. The purpose of these experiments is to provide guidance in fur-
ther developing the CMRadar system by answering the question: What data should be
logged by a deployed CMRadar agent in order to help it learn? Although a working
prototype of CMRadar is completed as described in this paper, we use simulations for
our investigation because it allows large numbers of experiments to be done efficiently.
Furthermore, CMRadar has not yet been deployed to users so that in-situ studies may
be done.

In the next section, we describe the experimental setup and the results obtained. The
results show that a scheduling strategy that explicitly takes into account negotiation
costs outperforms other simpler strategies assuming that these costs can be perfectly
known. Of course, predicting negotiation costs can be a difficult challenge in the real
world and is one of the key issues that we will investigate next. However, the results
presented in this section are significant because they show that recording past negoti-
ation costs and learning to predict them would be valuable since they can be used to
improve system performance.

6.1 Experimental Setup

While CMRadar is responsible for making many different calendar management deci-
sions, this section focuses on one key decision related to meeting scheduling in which
the agent must decide in which time slot to put a particular meeting. This decision is
complicated by the fact that multiple meetings may compete for the same time slot. For
example as we saw in Figure 5, M2 occupied a time slot (10 am) that was desired by a
new higher priority meeting M1. The agent must decide whether to assign the time slot
to M1 and “bump” M2 and reschedule it, or keep M2 where it is and put M1 somewhere
else. The decision to bump M2 incurs cost because it requires sending messages to the
other attendees with a request to reschedule and waiting for responses. These responses
may not come immediately because the other attendees may in turn need to bump other

178 P.J. Modi et al.

meetings. If these costs are large, it may be better for the agent to not bump M2 and in-
stead find an alternative time slot for M1. Note that it is difficult to determine in advance
which is the better decision because the costs incurred for each decision are not known
and because other people’s schedules and preferences are not directly observable.

To investigate this issue, we use the following model. Let calendar = {slot1,
slot2, ..., slotn} be the set of time slots in a user calendar and M = {M1, M2, ...,Mm}
be a set of meetings. The task of the agent is to determine a schedule in which no more
than one meeting is in a given time slot. Let the function sched : calendar → M be a
schedule that maps time slots to meetings. For each meeting, the user has a preference
ordering over all time slots. Let V i

p (Mj) denote the user preference for putting meeting
Mj in sloti. For a given schedule sched, let Vp(sched) =

∑
sloti∈calendar V i

p (sched
(sloti) = Mj) denote the total quality of the schedule. Finally, the assignment of a
meeting to a time slot incurs some negotiation cost which can be a complex function
of the other attendees of the meeting and the time slot. Let Ci

n(Mj) be the cost for
putting meeting Mj in sloti. We assume that each meeting has a unique desired slot
where there is zero cost if it is scheduled in that slot. The “desired slot” models a time
that is proposed by other attendees. That is, when an agent receives a request “Can
you meet at 10 am?”, there is no negotiation cost for scheduling at 10 am because
presumably the requester is free at that time. So we assume Ci

n(Mj) = 0 if sloti is
the desired slot for Mj . Finally, the total cost of a schedule is given by Cn(sched)
=

∑
sloti∈calendar Ci

n(sched(sloti) = Mj). While this model is clearly limited in
many respects, it provides a simple yet effective approach for investigating alternative
decision-making strategies.

6.2 Evaluating Strategies

Using the above model, we now present empirical results for three different decision-
making strategies: Greedy, Bumping and Ncost. In the simplest Greedy strategy shown
in Figure 8, an agent only inserts meetings into free slots and never backtracks on these
decisions. If the desired slot for a particular meeting is already taken, the meeting is
inserted into an alternative time slot that is both free and highest-ranked according to
local preferences. For not putting the meeting in the desired slot, the agent incurs a
negotiation cost as shown in line 6 of Figure 8.

procedure GreedyStrategy(Mi, desiredSlot)
(1) if desiredSlot is not null and is free:
(2) put Mi into desiredSlot
(3) else:
(4) timeslot ← best free slot for Mi

according to preferences
(5) put Mi into timeslot
(6) ci ← actual cost of negotiating with

other attendees for Mi

(7) Cn = Cn + ci

Fig. 8. Greedy Meeting Scheduling

CMRadar: A Personal Assistant Agent for Calendar Management 179

procedure BumpingStrategy(Mi, desiredSlot)
(1) if desiredSlot is free:
(2) put Mi into desiredSlot
(3) else:
(4) Mj ← current meeting in desiredSlot
(5) vj ← preference for Mj in desiredSlot
(6) vi ← preference for Mi in desiredSlot
(7) if vi > vj : // bump Mj

(8) put Mi into desiredSlot
(9) GreedyStrategy(Mj , null)
(10) else:
(11) GreedyStrategy(Mi, null)

Fig. 9. Scheduling with Bumping

The Bumping strategy shown in Figure 9 is more complex because it bumps meet-
ings out of their desired slots if a new meeting is more preferred. However, the decision
to bump or not is made exclusively using local preferences and does not take into ac-
count negotiation costs that may be incurred.

Finally, the NCost strategy shown in Figure 10 takes into account both local pref-
erences and predicted negotiation costs. As shown in line 9, an existing meeting Mj is
bumped in favor of meeting Mi only if the preference for Mi minus the cost for renego-
tiating for Mj is greater than preference for Mj minus the cost for renegotiating for Mi.

Figure 11 shows the empirical results averaged over 100 runs. In each run, we use a
calendar consisting of 9 one hour time slots (from 8 am to 5 pm) initialized with 25% of
the slots full. The agent is tasked with iteratively scheduling meetings as they arise over
time. The negotiation cost for a particular meeting is modeled as a random number taken
from [0,100]. The user preference V i

p (Mj) is calculated as the priority of Mj divided
by the distance of sloti from slotpref , where priority is a random number taken from

procedure NCostStrategy(Mi, desiredSlot)
(1) if desiredSlot is free:
(2) put Mi into Mi

(3) else:
(4) Mj ← current meeting in desiredSlot
(5) vj ← preference for Mj in desiredSlot
(6) vi ← preference for Mi in desiredSlot
(7) ci ← predicted cost of negotiating with

other attendees for Mi

(8) cj ← predicted cost of negotiating with
other attendees for Mj

(9) if vi − cj > vj − ci: // bump Mj

(10) put Mi into desiredSlot
(11) GreedyStrategy(Mj , null)
(12) else:
(13) GreedyStrategy(Mi, null)

Fig. 10. Scheduling with consideration of negotiation costs

180 P.J. Modi et al.

-20

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7

V
p

-
C

n

Time

Vp - Cn over time

Greedy
Bumping

NCost

 0

 50

 100

 150

Greedy NcostBumping

V
p

-
C

n

Scheduling Strategy

Difference between schedule quality
 and negotation cost

(a) (b)

Fig. 11. The NCostStrategy, which trades off local preference (Vp) with negotiation cost (Cn),
outperforms a strategy that schedules only in free slots (Greedy) and one that only uses prefer-
ences (Bumping). (b) shows the final Vp - Cn for the time series data shown on (a)

[0,100] and slotpref is a random slot in the calendar. Thus Vp and Cn range from zero to
100 times the number of meetings in the calendar. Figure 11 (a) shows how performance
varies as 7 meetings are scheduled in sequence, while Figure 11 (b) shows that the
final schedule obtained using NCost strategy is superior in performance to the others as
measured by the quality of the resulting schedule (Vp) minus the negotiation costs for
obtaining that schedule (Cn). These results indicate that logging past negotation costs
and using them to predict future costs can be used to improve performance.

7 Conclusion

We presented CMRadar, an implemented system for calendar management. CMRadar
is a complete agent in the sense that it is able to facilitate meeting scheduling across the
entire spectrum from initiation to confirmation to rescheduling. While we have thus far
concentrated on breadth of functionality, in future work we will develop more sophis-
ticated reasoning within each component along the dimensions of the key challenges
discussed. CMRadar indeed presents a challenging road map for future research in ef-
fective learning personal assistant agents.

Acknowledgments

This work is supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. NBCHC030029. We thank the following people for their work on
CMRadar: Andrew Faulring, Brad Meyers, Kerry Hannan, Lawrence Lee, Akiva Lef-
fert, Elisabeth Crawford, Donna Gates, Benjamin Han, and Lori Levin.

References

1. M.A Becker and S.F Smith. Mixed-initiative resource management: The amc barrel allocator.
In Proceedings of the Fifth International Conference on Artificial Intelligence Planning and
Scheduling (AIPS-00), pages 32–41, Breckenridge CO, April 2000. The AAAI Press.

CMRadar: A Personal Assistant Agent for Calendar Management 181

2. Michael Bowling, Brett Browning, and Manuela Veloso. Plays as effective multiagent plans
enabling opponent-adaptive play selection. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS’04), 2004.

3. H. Chalupsky, Y. Gil, C.A. Knoblock, K. Lerman, J. Oh, D.V. Pynadath, T.A. Russ, and
M. Tambe. Electric elves: Applying agent technology to support human organizations. In
Proceedings of Innovative Applications of Artificial Intelligence Conference, 2001.

4. Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling: Preliminary experi-
mental results. In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS’95).

5. N. R. Jennings and A. J. Jackson. Agent based meeting scheduling: A design and implemen-
tation. IEE Electronics Letters, 31(5):350–352, 1995.

6. Pattie Maes. Agents that reduce work and information overload. Communications of the
ACM, 37(7), 1994.

7. Tom M. Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David Zabowski.
Experience with a learning personal assistant. Communications of the ACM, 37(7):80–91,
1994.

8. J. Oh and S.F. Smith. Learning user preferences for distributed calendar scheduling. In Proc.
5th International Conference on Practice and Theory of Automated Timetabling (PATAT),
Pittsburgh, PA, 2004.

9. T. R. Payne, R. Singh, and K. Sycara. Calendar agents on the semantic web. In IEEE
Intelligent Systems, volume 17(3), pages 84–86, 2002.

10. The Radar Project. ”www.radar.cs.cmu.edu”, 2004.
11. Sandip Sen and Edmund H. Durfee. On the design of an adaptive meeting scheduler. In

Proc. The Tenth IEEE Conference on Artificial Intelligence for Applications, pages 40–46,
1994.

12. Sandip Sen and Edmund H. Durfee. A formal study of distributed meeting scheduling. In
Group Decision and Negotiation, volume 7, pages 265–289, 1998.

13. S.F. Smith, O. Lassila, and M.A. Becker. Configurable, mixed-initiative systems for planning
and scheduling. In A. Tate, editor, Advanced Planning Technology. AAAI Press, Menlo Park,
1996.

14. Xiaoqin Zhang and Victor Lesser. Multi-linked negotiation in multi-agent systems. In Pro-
ceedings of the first international joint conference on Autonomous agents and multiagent
systems, 2002.

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 182 – 197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agents as Catalysts for Mobile Computing

G.M.P. O’Hare1, M.J. O’Grady2, R.W. Collier2, and S. Keegan2

1 Adaptive Information Cluster (AIC),
Department of Computer Science, University College Dublin (UCD),

Belfield, Dublin 4,Ireland
gregory.ohare@ucd.ie

2 Practice & Research in Intelligent Systems & Media (PRISM) Laboratory,
Department of Computer Science, University College Dublin (UCD),

Belfield, Dublin 4, Ireland
{michael.j.ogrady, rem.collier, stephen.keegan}@ucd.ie

Abstract. Agent-Oriented Programming (AOP) offers an alternative and radical
approach to the development of information systems in various domains.
However, one domain that AOP has only minimally affected, at least up until
now, is that of mobile computing. Until recently, the use of strong intentional
agents in such a domain has been considered impractical and, indeed,
computationally intractable. In this paper, Agent Factory, a system for the
fabrication of strong intelligent agents, is reviewed in the light of agent
deployment on mobile devices. As an illustration of the potential of agents in
mobile applications, two archetypical mobile computing applications, realised
through Agent Factory, are described.

1 Introduction

This paper explores one particular genre of Agent-Oriented Information Systems
(AOIS), namely mobile and ubiquitous computing. Such systems are typified by
devices that are computationally challenged in terms of screen, memory and processor
real estate, as well as networks that are resource-bounded and bandwidth restricted.
Users expect content relevance, timeliness and a degree of personalization to their
individual needs. These demands are significant and demanding, and necessitate
systems that exhibit the ability to anticipate the content and service needs of users.
 Until recently, the use of strong intentional agents in such a domain would have
been considered impractical, and, indeed, computationally intractable. In this paper,
Agent Factory, a system for the fabrication of strong, intelligent, mobile and agile
agents is utilized. In particular, its strategies for realising such agents in the
computationally-constrained world of mobile computing are outlined. We illustrate
the successful deployment of agent technology generally and Agent Factory
specifically via two archetypical mobile computing applications. The first, EasiShop,
a ubiquitous commerce (uCommerce) application, enables shoppers to seek out good
deals while wandering an arbitrary shopping mall or high street. The second,
Gulliver’s Genie, is a mobile context-sensitive tourist guide that focuses on the
delivery of personalised multimedia content in a just-in-time basis.

 Agents as Catalysts for Mobile Computing 183

2 Agent Factory

Agent Factory (AF) [1] [2] [3] is a cohesive framework, illustrated in Figure 1., for
the development and deployment of agent-oriented applications that has been
developed by the authors. Central to this framework is the Agent Factory Agent
Programming Language (AF-APL), an Agent-Oriented Programming (AOP)
language that supports the fabrication of agents that are autonomous, situated, socially
able, intentional, rational and mobile. However, Agent Factory differs from other
AOP offerings in that AF-APL has been embedded within a distributed FIPA-
compliant [4] Run-Time Environment, and supports the development and deployment
of agents through an integrated development environment, and an associated software
engineering methodology. Details of these layers are presented in the following
sections.

Fig. 1. The Agent Factory Framework and its associated Development Methodology

A key concern in the design of AF has been to ensure that AF-APL agents can be
deployed on Personal Digital Assistants (PDAs). This has been achieved by ensuring
that the Run-Time Environment, which includes the AF-APL Interpreter, is compliant
with version 1.1.8 of the Java SDK (a.k.a. Personal Java for Mobile Devices). To
check compatibility with future versions of Java, J2ME-compliant versions of the
Run-Time Environment have also been developed. However, due to incompatibilities
between Personal Java and J2ME, and as a result of our wish to ensure that AF can be
deployed on the most prevalent operating system / JVM configuration for PDAs (e.g.
MS PocketPC and Jeode), AF is currently not J2ME-compliant.

2.1 AF-APL

AF-APL is a declarative Agent-Oriented Programming (AOP) language that supports
the programming of agent behaviours. The basic premise behind AF-APL is the view
that complex agent behaviours can be more naturally modelled by viewing agents to

184 G.M.P. O’Hare et al.

be mental entities that maintain an internal mental state that is comprised of mental
attitudes, in this case: beliefs and commitments. Beliefs describe, using a first-order
logic representation language, the current state of the agent and its environment, and
commitments describe the current (and future) activities that the agent has decided to
perform. These will be illustrated further in Sections 3.3 and 4.4 respectively. Finally,
decisions are modelled through a set of commitment rules that map situations (a
conjunction of positive and negative beliefs) onto commitments. These rules are
checked repeatedly within a sense-deliberate-act cycle.

As with other similar offerings, such as Goal-Directed 3APL [5] and
AgentSpeak(L) [6], the syntax and semantics of AF-APL have been formally
specified. In particular, AF-APL is based upon a logical model of reasoning that is
centred about the notion of commitment. This contrasts with the more traditional
Belief-Desire-Intention (BDI) architecture [7] on which these other approaches are
based. In our model, intentions are synonymous with commitments, while goals are
represented implicitly as the situations in which the agent must commit to a given
course of action. Details of both the formal model and the syntax and semantics of
AF-APL can be found in [2]. Finally, [8] presents a recently proposed extension to
AF-APL that supports both goals and means-end reasoning.

2.2 The Run-Time Environment

The AF-APL interpreter is embedded within a distributed FIPA-compliant Run-Time
Environment (RTE). Specifically, AF adheres to the following FIPA specifications:

 The FIPA Abstract Architecture Specification (0001);
 The FIPA Agent Management Specification (00023);
 The FIPA ACL Message Structure Specification (00061);
 The FIPA Agent Message Transport Service Specification (00067);
 The FIPA ACL Message Representation in String Specification (00070);
 The FIPA Message Transport Protocol for HTTP Specification (00084);
 The FIPA Agent Message Transport Envelope Representation in XML

Specification (00085).

Within the context of these specifications, the RTE is organised as a collection of
agent platforms. An Agent Platform (AP) provides the basic infrastructure that is
necessary to deploy agents. Specifically, each AP implements a number of platform
services, which provide various mandatory and optional infrastructure services. One
platform service is the Agent Management System (AMS) service. This service is
mandatory and is responsible for the creation, termination, suspension, resumption,
registration, deregistration and execution of agents that are residing on the AP. A
second service is the optional HTTP Message Transport Service, which provides a
HTTP-based message-passing infrastructure for the Run-Time Environment. Other
services include directory facilitator services (i.e. yellow pages services), persistence
services, migration services and cloning services. During the development of agent-
oriented applications, developers are required to identify and implement an
appropriate set of platform services.

In addition to the platform services, the RTE also implements a number of System
Agents, the most important being the AMS and DF agents. In essence, both these

 Agents as Catalysts for Mobile Computing 185

agents are agent wrappers that envelop the associated AMS and DF platform services
respectively. Both agents control access to the relevant service on the AP.

2.3 The Development Methodology

Methodological support for the fabrication of agent-oriented applications using Agent
Factory is provided through a software engineering process that supports the design,
implementation, testing and deployment phases of the software engineering lifecycle
and utilizes the UML as its modelling language. A diagrammatical overview of this
process, details of which can be found in [9], is presented in Figure 1. It can be seen
that the design stage of the process focuses around the development of five models:

1. The System Behaviour Model (SBM) is used to identify the main roles that
agents will play within the system, and to associate those roles with the key
system behaviours. Visually, this model is formalised using a customised UML
Use Case Diagram where actors are stereotyped as roles, and use-cases are
stereotyped as system behaviours.

2. The Interaction Model (IM) expands on the SBM through the modeling of the
interactions that occur within each of the system behaviors. Visually, this
model is formalized using a customized UML Collaboration Diagram.

3. The Activity Model (ActM) complements the IM, in that it expands on the
SBM through the modeling of the set of activities that occur within each of the
system behaviors. Visually, this model is formalized using a customized UML
Activity Diagram where swimlanes are employed to represent roles.

4. The Protocol Model (PM) represents the transition point where the focus turns
from understanding the system behaviors to the formalization of those
behaviors as a set of protocols and agent-classes. Visually, these protocols are
represented using Agent UML Sequence Diagrams.

5. Finally, the Agent Model (AgtM) completes the design by switching the focus
from roles, interactions and activities to a more agent-centric view of the target
system in which roles and agent classes become the constituent components.

2.4 The Development Environment

Support for the development of agents is realized through a number of toolsets. The
Agent Factory Integrated Development Environment (IDE) provides a standard
programming environment in the vein of NetBeans and JBuilder. Specifically, the
editor includes features such as syntax highlighting, code compilation and application
execution.

In addition, VIPER [10] is a graphical tool suite that allows the user to compose
the Agent UML Sequence Diagrams that sit at the heart of the Protocol Model.
VIPER is comprised of two tools: a Protocol Editor that provides a visual tool for
generating Agent UML Sequence Diagrams and a Rule Editor that further supports
the user by guiding them through the step of implementing the protocols in AF-APL.

In addition to the tools that have been provided to support the development of AF-
APL agents, the Agent Factory Development Environment also includes a suite of
tools that facilitate the testing and debugging of agent-oriented applications. These
tools are associated with the Agent Platform component of the Run-Time
Environment and include:

186 G.M.P. O’Hare et al.

 the Agent Viewer Tool, which allows the developer to monitor and modify the
agents internal state;

 the Message Sender, which allows the developer to interact with other agents
as if they were themselves an agent; and

 the Community Monitor, which allows the developer to monitor interactions
between a specified set of agents.

3 EasiShop

Delivering a real-time shopping solution is regarded as a litmus test for intelligent
mobile agent technologies. Attempts to deliver such a mechanism on the web are well
documented. Some insights revealed by these attempts hold a certain relevance to our

Fig. 2. Overview of EasiShop

 Agents as Catalysts for Mobile Computing 187

domain. Ringo [11] for example, incorporated a collaborative filtering mechanism.
This approach has since been adopted in the commercial realm by vendors such as
Amazon. ShopBot [12] was an agent that could learn how to submit queries to e-
commerce sites and interpret the resulting dataset to identify lowest-priced items.
ShopBot automated the process of building wrappers to parse semi-structured HTML
documents and extract features such as product descriptions and prices. Tete@Tete
agent technology [13] strives to deliver integrated product brokering, merchant
brokering and negotiation, thus encompassing three stages of the consumer buying
behavior model as documented by Howard and Sheth [14].

Research into the role of intelligent mobile shopping systems is less mature. The
Impulse project [15] developed at MIT augments GPS with agent technologies to
provide context-sensitive information to the user. The main objective of the
MyGrocer [16] project is to enable interactivity, personalisation and automation of
home replenishment activities for products in the grocery retail sector. The Shopper’s
Eye experiment [17] introduces the concept of location-based filtering to assist the
shopper. In contrast to all of these, however, EasiShop [18] [19] adopts a user-centric
approach, realised through a suite of strong intentional agents. Its principal objective
is the delivery of a scalable architecture that permits the partial automation of the
shopping process while maximizing the opportunity for a prospective shopper to avail
of optimum consumer conditions, for example, price, geographical proximity, after-
sales service and so on.

3.1 The EasiShop Scenario

To envisage the modus operandi of EasiShop, let’s assume the situation whereby the
shopper is in possession of a PDA with the onboard client-side EasiShop system. To
initiate the system, the shopper provides a composite set of preferences, profile and
shopping list information. This is accomplished using the standard input of the PDA –
stylus or virtual keyboard. The EasiShop architecture is complemented by another
aspect of the system – the server-side components. It is envisaged that each
participating retailer will make provision for an EasiShop Hotspots (EH). The EH is
an active bluetooth broadcast area, strategically positioned at the foyer of the store.
This zone provides a channel by which negotiation and trade can occur between the
PDA Agent and the representative Store Agent. Figure 2 illustrates the main
components of EasiShop.

The architecture is completed by the EasiShop Marketplace. This is a remote server
containing software implementing an agent-based auction protocol. Using a specially
adapted auction protocol (based on the Vickrey model), the system permits expedient
and Pareto-efficient negotiation in real-time. The Marketplace also contains a secure
datasink in which user profile information is retained. This information can be utilized
to provide the shopper with more appropriate product offerings as well as providing
Store Agents with valuable information as to what type of potential customer is in the
proximity. It can be seen that the EH acts as a conduit between the shopper,
represented by a personal PDA Agent, and the Marketplace.

188 G.M.P. O’Hare et al.

3.2 Implementation

The EasiShop system was realised as a seven layer architecture, as illustrated in
Figure 3. These layers are now considered briefly:

Fig. 3. The EasiShop Architecture

Agent Factory. System intelligence is delivered through Agent Factory.

Data Structures (XML). An adaptation of the Contract Net Protocol as proposed by
Davis and Smith [20] has been proven to be the most appropriate mechanism for
EasiShop. Agents utilise the protocol to make contracts which are binding for sales
and purchases. For each bidding cycle, the communication involves four message
types: Task announcement, Bidding, Awarding and Report Messages. In
implementing the Contract Net Protocol, a suitable product description ontology is
necessitated. For EasiShop, the UNSPSC [21] has been proven to be the most
appropriate. XML was selected to represent the product information because of its
inherent portability and for the fact that it becoming a de facto standard. It is
extensible and separates content from presentation. Each time the shopper passes an
EasiShop Hotspot, the difference (if any) between the product database on the
EasiShop server and the PDA is sent to the PDA. In essence, all that is sent is the diff
of the two files.

Auction Protocol. There are several existing protocols for multiple seller/single
buyer auctions. English, Dutch and Vickrey are some examples. Each has a set of
inherent advantages and drawbacks. When compared to other auction protocols,
Vickrey auctions have the advantage that their duration is known prior to the auction
taking place (each interested party bids only once). This factor holds particular
relevance to the EasiShop domain, where, due to the fact that users are mobile and
typically moving at a walking pace, real-time auction resolution is imperative.
Furthermore, since the dominant bidding strategy of the Vickrey protocol is to bid to
one's true evaluation, counter-speculation is avoided and a realistic psuedo-
marketplace can be realised. Dutch auctions, on the other hand, have been shown to

 Agents as Catalysts for Mobile Computing 189

provide more revenue for the seller than Vickrey auctions in situations with three or
more bidders, while both English and Vickrey auctions provide higher revenue for the
auctioneer than their Dutch and first-price sealed bid counterparts.

BlueZ Bluetooth Protocol Stack. BlueZ is the official Linux Bluetooth protocol
stack. It is an Open Source project distributed under GNU General Public License
(GPL). To facilitate EasiShop, a module that accesses and utilises the BlueZ core was
developed. As part of this process, it was necessary to construct an interface to permit
information flow between the BlueZ module and the JRE.

Java Runtime Environment (JRE). The Blackdown JRE 1.3.1 RC1 for the
Linux/ARM architecture is utilised on the PDA. Kaffe, a clean room implementation
of the Java virtual machine, plus the associated class libraries needed to provide a JRE
is used at the Store and Marketplace hosts. Blackdown is the JRE of choice for
implementation on the PDA since it offers sophisticated GUI functionality. This
includes the Swing components like JTree and JEditPanel, which allow for complex
XML document display and manipulation techniques.

Linux Operating System. The Server-side components reside on a Linux 2.4.18-3
server. The PDA (an IPAQ 3870) runs the familiar v0.6.1 Linux build (2.4.18-3) from
handhelds.org. Many of the inherent benefits of Linux are applicable to the EasiShop
implementation. These are widely documented and encompass stability, security,
open source, network orientation, speed and efficiency.

3.3 Agents @ Work in EasiShop

To demonstrate how agents support the EasiShop vision, consider the following series
of events. In the typical EasiShop scenario, the shopper, equipped with a PDA, is
situated in a busy shopping street. The shopper enters an EasiShop hotspot when
passing within bluetooth broadcast range of a participating retailing outlet. Upon
entering the hotspot, agent collaboration ensues. Activity is initiated by the PDA
Agent (housed on the user’s PDA) when it (having briefly liaised with the StoreFront
Agent) uploads a shopping list to the shop. At this point, the Store Manager agent
determines that one of the products on the list is currently in stock here. The PDA
Agent is informed of this and may choose at this point to initiate the migration of the
Shopper Agent from the PDA to the shop. The commitment rule that specifies this
behavior is as follows and is further illustrated in Figure 4.

BELIEF(ShopHasProduct(?product)) &
BELIEF(inHotspot(?thestore)) =>
COMMIT(Self,Now,BELIEF(true),Migrate2Store(?thestore));

In general, the Agent Factory IDE proved to be invaluable during the delivery of
EasiShop. The Agent Viewer Tool, the Message Sender and the Community Monitor
were seen to be essential in debugging and optimizing agent states and interactions.
The Agent Viewer Tool in particular enables a convenient means of visualizing real-
time inter-agent communications. At present, the VIPER tool has been integrated to a
lesser degree with the overall system when compared with the other tools. However,
the potential of this tool, particularly in terms of delivering efficient inter-agent
activity protocols, became apparent during the implementation and full integration
would undoubtedly be of great benefit.

190 G.M.P. O’Hare et al.

Fig. 4. A commitment is triggered in EasiShop

4 Gulliver’s Genie

Gulliver’s Genie [22] [23] is an application developed with the primary intention of
delivering services to mobile users. Though it currently concentrates on the tourist
domain, we expect it to evolve into a generic and customisable application that will
deliver various services to mobile users. In addressing the needs of tourists, it is not
unique, as several research disciplines have found the tourist domain a fertile testbed
for theories and applications. Projects that come closest to the Genie in objectives and
scope include GUIDE [24], a context-sensitive tourist guide for the city of Lancaster,
and CRUMPET [25], developed for the city of Heidelberg. Examples of commercial
products include Vindigo [26] and Portable Guide [27]. However, it is its use of BDI
agents that differentiates the Genie from all other efforts in this area. Indeed, it may
be regarded as a Multi-Agent System (MAS), the context of which envelops the
Internet, a wireless data network and PDAs, and comprising a suite of agents all
collaborating to obtain the Genie’s goal: the timely distribution of information to
roaming tourists.

4.1 Genie Services

At present, services provided by the Genie fall into two categories:

1. Navigation: Navigation support is a service that mobile users, and tourists in
particular, find useful. Such a service can range from simple to sophisticated

 Agents as Catalysts for Mobile Computing 191

with the Genie lying somewhere in between. An electronic map, scaled to
street level and with all the relevant attractions highlighted, constitutes the
initial component of the Genie’s navigation support service. However, this is
augmented with a real-time position determination facility that ensures that
the tourist’s position and orientation are always highlighted on the map. In
this way, the tourist can see their location at any given instance.

2. Cultural Information: Though the motivation of individual tourists may vary
considerably, experiencing the culture of a new environment is a common
goal. The Genie seeks to facilitate this experience by delivering concise
multimedia presentations on the various tourist attractions within the region
in question. The presentations are dynamically assembled to account for the
tourist’s position, orientation and, particularly, their individual cultural
interests. As tourists come within a predefined range of an attraction, a
presentation is automatically activated.

4.2 Genie Architecture

The Genie architecture is illustrated in Figure 5, and comprises the following agents:

Fig. 5. The Architecture of the Genie

Spatial Agent. As its name suggests, the Spatial Agent monitors the tourist’s
movement and draws some inferences about what their activity is at any point in time.
It continuously monitors the position sensor, in this case GPS, and extracts both
position and orientation. After verifying that the readings are accurate and consistent
(a history of the tourist’s position readings is also maintained), it updates the display

192 G.M.P. O’Hare et al.

and notifies the Cache Agent. It then proceeds to review this new information in the
light of its goals or objectives. Obviously, one of its primary goals is to keep the
agents on the server up-to-date. Therefore, if the tourist has moved a significant
distance since the last update, the server agents may be notified. If not, then the agent
may decide not to dispatch any messages thus conserving bandwidth. Alternatively, if
the server agents have not been notified of a new position reading within a certain
time frame, the agent may decide that an update is appropriate.

Cache Agent. This agent manages the multimedia cache on the PDA, a critical task
given the bandwidth limitations of wireless networks as well as the memory
restrictions on current PDA models. Again, the Cache Agent works in close co-
operation with the Spatial Agent and the agents on the server. It relies on the server-
side agents for updates to its model of the tourist’s environment as well as the actual
multimedia files. It also relies on regular updates from the Spatial Agent concerning
the tourist’s current position and orientation. By comparing this reading with its
model of the attractions in the tourist’s vicinity, it can fulfil its fundamental objective
of displaying information that has been customised to the tourist’s interest profile, at
the appropriate time and place. It is assured that the individual tourist’s cultural
interests have been catered for when server agents dynamically assemble the
presentation.

Registration Agent. The Registration Agent is responsible for administrating the
agent community on the Agent Server. It allocates individual agents (Tourist Agents)
to tourists seeking to register for Genie services. It also performs standard
maintenance tasks and reallocates system resources upon tourists exiting the system.

GIS Agent. Providing what we term GIS - related services to Tourist Agents is the
function of the GIS Agent. It is equipped with a model of the environment in which
the tourist is currently roaming. Using this, it can advise on what tourist attractions, or
indeed any other desired facilities, exist within the tourist’s immediate vicinity.

Profile Agent. The Profile Agent maintains the tourist’s cultural interest profile and
advises on what content should be considered for inclusion in any multimedia
presentation sent to the tourist. In particular, it dynamically updates the model in
response to tourists’ selections when interacting with the Genie. In this way, the
model evolves over time and all information presented to the tourist is assured to be
compliant with the most recent deductions concerning the tourist’s interests. The
user’s profile, when augmented with their location and orientation, provide a rich set
of filters for adapting information prior to presenting it to the tourist.

Tourist Agent. All tourists who register with the Genie are assigned their own
individual agents, termed Tourist Agents. The Tourist Agent is essentially the
tourist’s gateway to the services provided by the Genie and maintains a snapshot of
the tourist’s activities at any given time. This agent, acting on information received
from the Spatial Agent, collaborates with both the GIS Agent and the Profile Agent to
ensure that the Cache Agent’s model of the tourist’s immediate environment is valid.
Secondly, it ensures that all cultural presentations that may be required as the tourist
continues to roam are pre-cached on the server, awaiting a download request from the
Cache Agent. This content has been adapted in light of input from the Profile Agent

 Agents as Catalysts for Mobile Computing 193

concerning the tourist’s interests. Adaptivity of information content ensures that
different users may well be presented with very different content even though they are
in the same vicinity! In the case of the Genie, adaptivity manifests itself in a variety of
forms. For example, a presentation could display different images dependent upon an
individual tourist’s direction of approach.

4.3 Implementation

The initial version of Gulliver’s Genie has been realised on an IPAQ H3660 running
Pocket PC. The IPAQ is equipped with a dual slot expansion sleeve that hosts the
PCMCIA cards for GPS (position recovery) and GPRS (data communications)
respectively. GPRS (General Packet Radio Service) is the first step in the evolution of
GSM data services to 3G. In contrast to its predecessor, it is a packet-switched system
and supports the IP protocol. It also supports dynamic bandwidth allocation thus
making the prediction of download times impossible. While it supports data speeds of
up to 30 kb/s on average, our experience indicates that these can vary quite
considerably and even drop down to 9.6 kb/s, the standard rate supported by GSM.
All data communications with the server use the standard Internet protocol HTTP and
the Jakarta Servlet engine is used to interface with the server. In each case, Java is the
programming language of choice. At present, the Java client is implemented using
Jeode, a commercial implementation of a JVM for devices running Pocket PC. Sound
playback is achieved using a customised version of the Java Media Framework
(JMF).

4.4 Agents @ Work in Gulliver's Genie

Before discussing some examples of commitment rules that the Genie uses, it is
instructive to reflect on some of the pertinent issues concerning the deployment of
strong intentional agents of mobile devices. The first issue of note is that such agents
are computationally expensive when considered in the light of the limited resources
on PDAs. Therefore, the task(s) assigned to the agent needs careful consideration.
However, at some point a trade-off will occur. Ideally, each task would be assigned a
different agent. From a design perspective, this is appealing and intuitive for all the
obvious reasons. In practice, this could well mean assigning what might be considered
relatively trivial tasks to agents. However, as the number of agents increases, system
performance will decrease in something that would be quite noticeable on a PDA.
Therefore the designer must, early in the design process, make a judicious decision
concerning the number of agents that can be deployed without degrading
performance.

Two agents have been incorporated into the Genie MAS for deployment on the
PDA. Given the importance of position to the successful operation of the Genie, the
task of interfacing with the GPS device and interpreting the GPS signals has been
assigned to the Spatial Agent. While the autonomous nature of the agent makes it
ideal for this task, its reasoning engine is not unduly stressed. In essence, it
periodically polls the device to assess the health of the signal and determine the user's
new position and orientation. By recording the most recent positions, it can of course
make certain deductions concerning the user's movement, for example, whether they

194 G.M.P. O’Hare et al.

are walking or standing. Although another approach could have been adopted, the use
of an agent ensured that this vital task could be performed in an integrated manner
without affecting system performance adversely. A secondary consideration was the
possibility that an alternative position determination mechanism might be used at
some future point, either one based on wireless telecommunications network or one
that augmented the basic GPS signal via some Satellite-Based Augmentation System
(SBAS). In which case, the basic agent functionality would be the same but its logic
for interfacing with the appropriate device would be different.

In the case of the Cache Agent, it has responsibility for implementing the Genie's
intelligent precaching mechanism, the details of which may be found elsewhere [22].
However, as an example, consider the scenario where the agent must trigger a
presentation for the user. To do this, it must first precache a presentation for the
exhibit in question. Then, if the exhibit is the nearest exhibit, which can be
determined from its model of the local environment, and the tourist is with in a certain
predefined distance of the exhibit, calculated from the current position as indicated by
the Spatial Agent, then the Cache Agent is in a position to trigger a presentation. An
example of a commitment rule that achieves this is as follows:

BELIEF(NearestExhibit(?exhibit)) &
BELIEF(ExhibitDistance(?delta) < (activation_radius)) &
BELIEF(CachedPresentation(?exhibit)) => COMMIT(Self,
Now, BELIEF(true), DisplayPresentation(?exhibit));

An illustration of an agent's mental state that would give rise to the activation of
this commitment rule is illustrated in Figure 6.

Fig. 6. Example of the mental state of a Cache Agent that triggers the display of a presentation

Finally, it's useful to reflect on the use of the Agent Factory IDE when developing
the Genie, in particular those tools provided for testing and debugging. The Agent
Viewer Tool proved indispensable for ensuring that the agents' mental state remained
consistent. In particular, its ability to track the adoption of commitments facilitated

 Agents as Catalysts for Mobile Computing 195

the quick identification of those parts of the system that were functioning incorrectly.
Though Message Sender Tool was used less frequently, it proved useful for
interactively testing various scenarios whenever an agent's mental state was inconsistent
and the immediate cause of this was unclear. The Community Monitor was not used to
any great extent as the number of agents did not warrant its extensive use.

5 Conclusion

This paper has explored one particular genre of Agent-Oriented Information Systems
(AOIS), that of mobile and ubiquitous computing. Specifically, we have
commissioned Agent Factory, a system for the fabrication of strong, intelligent,
mobile and agile agents, in the realization of two archetypical mobile computing
applications: EasiShop and Gulliver’s Genie. Our experiences have shown the
feasibility of supporting mobile intentional agents within a mobile computing context.
Both EasiShop and Gulliver's Genie have successfully harnessed intentional agents in
the delivery and deployment of location-aware and context-aware services.
These systems have served as case studies vindicating the efficacy of the approach,
the methodology utilised and the Agent Factory development environment.

Mobile computing applications present some particular problems from which agent
based systems are typically shielded. The first is that of the heterogeneity of mobile
devices, ranging from processor specification, memory availability, screen real estate,
peripherals, operating system, available battery power and many more. All present
specific decisions ranging from the use of J2ME or Personal Java, to the feasibility of
a single or multi-threaded approach. Further to this are the restrictions and limitations
of network bandwidth and latency. Where multimedia content is dynamically
assembled and fetched from a remote server, these are critical performance issues.
Within Gulliver's Genie, agents can and have been used in the creation of the illusion
of limitless bandwidth through intelligent precaching. Within EasiShop the migration
of agents to the market place gives rise to further network demands.

In conclusion, agents offer intriguing possibilities in the new ubiquitous and
mobile application space. Part and parcel of this are the associated challenges that this
sector presents necessitating agile, mobile agents that can potentially exhibit
autonomic and self adaptive capabilities.

Acknowledgements

Michael O'Grady gratefully acknowledges the support of the Irish Research Council
for Science, Engineering & Technology (IRCSET) though the Embark Initiative
postdoctoral fellowship programme. Gregory O'Hare gratefully acknowledges the
support of Science Foundation Ireland under Grant No. 03/IN.3/1361.

References

1. O’Hare G.M.P., Agent Factory: An Environment for the Fabrication of Multi-Agent
Systems, in Foundations of Distributed Artificial Intelligence (G.M.P. O’Hare and N.
Jennings eds) pp449-484, John Wiley and Sons, Inc., 1996

196 G.M.P. O’Hare et al.

2. Collier., R., Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications, PhD Thesis, Dept. Computer Science, University College Dublin, 2001.

3. Collier, R., O’Hare, G. M. P. Lowen, T. D., and Rooney, C. F. B., Beyond Prototyping in
the Factory of Agents, In Proc. 3rd Int. Central and Eastern European Conference on
Multi-Agent Systems (CEEMAS), Prague, Czech Republic, 2003.

4. FIPA, The FIPA 2000 Specifications, FIPA Website URL: http://www.fipa.org
5. Dastani, M., van Riensdijk, B., Dignum, F., Meyer, J.J., A programming language for

cognitive agents: Goal directed 3APL, In: Proc. AAMAS2003, Melbourne, Australia,
2003.

6. Rao, A., Agentspeak(L): BDI agents speak out in a logical computable language, In de
Velde, W., Perram, W.J.V., eds.: Proceedings of the 7th International Work-shop on
Modeling Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands,
1996

7. Rao, A.S., Georgeff, M.P.: Modelling Rational Agents within a BDI Architecture. In:
Principles of Knowledge Representation. & Reasoning, San Mateo, CA. 1991.

8. Ross, R., Collier, R., O’Hare, G.M.P.: AF-APL – Bridging Principles & Practice in Agent-
Oriented Languages. In: Proceedings of the 2nd International Workshop on Programming
Multi-Agent Systems Languages and Tools (PROMAS-2004), New York, July, 2004.

9. Collier, R., O’Hare, G., Rooney, C.: A UML-based Software Engineering Methodology
for Agent Factory. In: Proc. 16th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE), Banff, Alberta, Canada, 2004.

10. Rooney, C.F.B., Collier, R.W., O’Hare., G.M.P.: VIPER: Visual protocol editor. In:
Proceedings of COORDINATION 2004, Pisa, Italy, 2004.

11. Shardanand, U., Maes, P.: Social information lettering: Algorithms for automating word of
mouth. In: Conference on Human Factors in Computing Systems: Mosaic of Creativity
(CHI’95), New York, USA, 1995, 210-217.

12. Doorenbos, R. B., Etzioni, O., Weld, D. S.: A Scalable Comparison-Shopping Agent for
the World-Wide Web. In: Proceedings of the First International Conference on
Autonomous Agents (Agents’97), Marina del Rey, CA, USA, 1997, 39-48.

13. Maes, P., Guttman, R., Moukas, A.: Agents that Buy and Sell: Transforming Commerce as
We Know It. In: Communications of the ACM, 42 (93), 1999, 81-91.

14. Howard, J. A., Sheth, J. N..: The Theory of Buyer Behavior. New York, John Wiley &
Sons, Inc., 1969.

15. Youll, J., Morris, J., Krikorian, R., Maes, P,: Impulse: Location-based Agent Assistance.
In: Software Demos, Proceedings of the Fourth International Conference on Autonomous
Agents, Barcelona, Spain, June, 2000.

16. Kourouthanasis, P., Spinellis, D., Roussos, G., Giaglis, G.: Intelligent cokes and diapers:
MyGrocer ubiquitous computing environment. In: Proceedings of the First International
Mobile Business Conf., 2002, 150-172.

17. Fano, A.: SHOPPER’S EYE: Using Location-based Filtering for a Shopping Agent in the
Physical World. In: Proc. 2nd Int. Conf. on Autonomous Agents, Minnesota, 1998, 416-
421.

18. Keegan, S., O'Hare, G.M.P.: EasiShop - Agent-Based Cross Merchant Product
Comparison Shopping for the Mobile User. In: Proc. of 1st Int. Conf. on Information &
Communication Technologies: From Theory to Applications (ICTTA '04), Damascus,
Syria, 2004.

19. Keegan, S., O’Hare, G.M.P.: EasiShop: Enabling uCommerce through Intelligent Mobile
Agent Technologies. In: Proceedings of 5th International Workshop on Mobile Agents for
Telecommunication Applications (MATA’03), Marrakesh, Morocco, 2003.

 Agents as Catalysts for Mobile Computing 197

20. Davis, R., Smith, R.G.: Negotiation as a Metaphor for Distributed Problem Solving. In:
Bond, A., Gasser, L. (eds.): Readings in Distributed Artificial Intelligence, 1988, 333-356.

21. United Nations Standard Products and Services Code: http://www.unspsc.org.
22. O'Grady, M. J., O'Hare, G. M. P.: Just-in-Time Multimedia Distribution in a Mobile

Computing Environment, IEEE Multimedia, vol. 11, no. 4, pp. 62-74, 2004.
23. O'Hare, G. M. P., O’Grady, M. J.: Gulliver's Genie: A Multi-Agent System for Ubiquitous

and Intelligent Content Delivery, Computer Communications, 26 (11), 2003, 1177-1187.
24. Cheverst, K., Mitchell, K., Davies, N.: The Role of Adaptive Hypermedia in a Context-

Aware Tourist Guide, Communications of the ACM. Vol. 45 (5), 2002, 47-51.
25. Poslad, S., Laamanen, H., Malaka, R. Nick, A., Buckle, P., Zipf, A.: CRUMPET: Creation

of User-friendly Mobile Services Personalised For Tourism. Proceedings of the 2nd
International Conference on 3G Mobile Communication Technologies, London, UK, 2001.

26. Vindigo, Inc. New York. http://www.vindigo.com.
27. 27.Port@ble Internet, Inc. New Jersey, http://www.portableinternet.com.

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 198 – 211, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Systematic Approach for Including Machine
Learning in Multi-agent Systems

José A.R.P. Sardinha, Alessandro Garcia, Carlos J.P. Lucena,
and Ruy L. Milidiú

TecComm Group (LES), Computer Science Department, PUC-Rio,
Rua Marques de São Vicente 225, Gávea, Rio de Janeiro, Brazil

{sardinha, afgarcia, lucena, milidiu}@inf.puc-rio.br

Abstract. Large scale multi-agent systems (MASs) in unpredictable
environments must use machine learning techniques to perform their goals and
improve the performance of the system. This paper presents a systematic
approach to introduce machine learning in the design and implementation
phases of a software agent. We also present an incremental implementation
process for building asynchronous and distributed agents, which suppors the
combination of machine learning strategies. This process supports the stepwise
building of adaptable MASs for unknown situations, improving their capacity to
scale up. We use the Trading Agent Competition (TAC) environment as a case
study to illustrate the suitability of our approach.

1 Introduction

Multi-Agent Systems (MASs) [1] [2] is a new technology that has been recently used
in many simulators and intelligent systems to help humans perform several time-
consuming tasks. Applications for e-commerce, information retrieval and business
intelligence use MAS technology to build distributed systems over the Internet. In
this context, machine learning algorithms are crucial to providing well-known
strategies to support the construction of adaptable agents, especially in unpredictable,
heterogeneous environments such as the Internet.

However, the incorporation of learning techniques into large scale multi-agent
systems is not a trivial task. Software engineers who design and implement realistic
MASs are faced with recurring learning concerns, such as: (i) How to evaluate if the
goal of a multi-agent system has been achieved? (ii) How to define the individual goal
of each agent in the system and evaluate it? (iii) How the knowledge of each
individual agent is going to be modelled? (iv) How this agent will acquire the
knowledge? (v) How to combine the multiple used learning techniques and to
distribute them to the different agents in a MAS, (vi) How to associate the learning
issues with typical abstractions in agent-based software engineering? and (vii) How to
specify the learning issues at an early design stage and support a smooth transition of
those issues to the implementation stages?

Unfortunately, software engineers have largely relied on their experience and
intuition to address the questions above during the development of realistic adaptable
MASs. Research on agent-based software engineering has focused on the

 A Systematic Approach for Including Machine Learning in Multi-agent Systems 199

development of new methodologies and implementation frameworks. However, these
approaches do not provide guidelines to support the incorporation of learning issues
into the system in the early stage of design. Implementation frameworks [3][4]
provide object-oriented APIs for MAS development, but they do not assist the
handling and structuring of the learning design in a systematic way. In addition, most
proposed methodologies [5] [6] are at too a high level and do not indicate how to
master the complexity of these learning concerns through the design and
implementation steps.

This observation provides the rationale for investigating how to integrate learning
issues neatly within agent-oriented software engineering. This paper presents a
systematic approach to support a disciplined introduction of machine learning
techniques in MASs from an early stage of design. The proposed approach
encompasses guidelines to both the design and implementation phases of an agent-
based system. It is based on an incremental development strategy that largely relies on
simulation and testing techniques.

This systematic approach emerged from our extensive experience on the
development of distinct and heterogeneous MAS applications, including: (a) a multi-
agent system [7][8] that uses evolutionary techniques to build offerings in a retail
market, (b) an agent-based system [9] that learns to play Tic-Tac-Toe with no prior
knowledge, (c) a multi-agent system [10] for the Trading Agent Competition (TAC)
[15], and (d) a multi-agent system [11] for managing the paper submission and
selection process in workshops and conferences.

The remainder of this paper is organized as follows. Section 2 presents a case study
that involves a multi-agent system for the TAC Competition. Section 3 presents our
approach to support the introduction of machine learning techniques in large scale
multi-agent systems. Section 4 presents our conclusions and directions for future work.

2 The Trading Agent Competition MAS – A Case Study

The Trading Agent Competition [12] (TAC) is designed to promote and encourage
high quality research into the trading agent problem. Figure 1 presents the architecture
of LearnAgents [10], a multi agent system with modular entities that are
asynchronous, distributed, reusable and easy to interoperate. We define agent types
that tackle sub-problems of trading, such as price prediction, bid planning, goods
allocation, bidding, among others. The system’s goal is to acquire travel packages for
clients with as much profit as possible. This profit is defined as the sum of the utilities
of the eight clients in the TAC game, minus the costs of acquiring the travel goods in
the auctions.

The Hotel Sensor Agent, Flight Sensor Agent and Ticket Sensor Agent are
responsible for the market sensory and knowledge building of the system. These
agents collect price information from auctions and store them in the knowledge base.
The sensor agents also receive all the events from the environment and are
responsible for notifying other agents in the system with these events. The Flight and
Hotel Price Predictor Agent is also responsible for knowledge building. This agent
predicts hotel and flight auction prices for the knowledge base. The price predictor
agent uses the price history in the knowledge to forecast auction quotes.

200 J.A.R.P. Sardinha et al.

The agent types responsible for bid planning are the Allocator Master Agent and
the Allocator Slave Agents. The slave agents calculate different scenarios based on
the prices in the knowledge base. These scenarios define travel good types and
quantities, and characterize a list of different strategies for the system. The Allocator
Master Agent is responsible for combining all the scenarios generated from the other
slave agents. These scenarios are then stored in the knowledge base.

Fig. 1. The LearnAgents Architecture

The Ordering Agent is responsible for good allocation. It also decides the quantity
of the required travel goods based on the scenarios in the knowledge base. This
decision is based on a scenario with a high profit and a low risk. The Hotel Negotiator
Agent, Flight Negotiator Agent and Ticket Negotiator Agent are responsible for
negotiating travel goods in the auctions based on the decision from the Ordering
Agent. The negotiators have the goal of buying all the requested goods with the
minimum expenditure. The Monitor Agent is responsible for saving data from the
environment and evaluating the performance of the multi-agent system.

There was a need to introduce machine learning techniques in the Flight and Hotel
Price Predictor Agent, the Allocator Master and Slave Agents, as well as in the Hotel
Negotiator Agent. For reasons of brevity, we will only illustrate in Section 3 the
design decisions of the Flight and Hotel Price Predictor Agent. However, we present
results of the performance gain obtained with the process of including machine
learning algorithms in the LearnAgents system based on our stepwise approach.

3 Introducing Learning Techniques in Multi-agent Systems

Mitchell [13] defines machine learning as follows: “A computer program is said to
learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with
experience E”. Consequently, machine learning techniques are normally used when
performance gain is required in a system. The main goal of the proposed approach is

 A Systematic Approach for Including Machine Learning in Multi-agent Systems 201

to support a disciplined introduction of machine learning techniques into a multi-
agent system. The process also permits in the implementation phase a disciplined
integration of disparate machine learning algorithms in agent-based systems and their
performance assessment. This systematic approach has four phases:

(i) Systemic Goal & Performance Measure Selection, where a systemic goal is
defined and a measure of performance is selected;

(ii) Agent Selection & Agent Learning Goal Definition, where agents with
complex plans are selected and goals are defined for the learning algorithm;

(iii) Agent Machine Learning Design, where code design is defined; and
(iv) Incremental Implementation & Performance Measurement, where an

incremental implementation is proposed with training, testing and evaluation.

Figure 2 depicts all the phases of the process. The following subsections describe
in detail each of the process phases and present the application of the approach to our
case study.

Fig. 2. The process for introducing Learning Techniques

• Systemic Goal of the
MAS

• Performance
Measure

Systemic Goal &
Performance Measure

Selection

Agent Machine Learning
Design

• Agent Goal
• Agent Performance

Measure
• Training Experience

Agent Selection & Agent
Learning Goal Definition

Design
Phase

Implementation
Phase

Incremental Implementation
& Performance
Measurement

• Code Design

• Request
Code Re-
Design

202 J.A.R.P. Sardinha et al.

3.1 Systemic Goal and Performance Measure Selection

Software engineers must define in this phase two central elements related to learning
issues: (i) the Systemic Goal, SG, and (ii) the Systemic Performance Measure, SP,
which measures the system’s performance gain. The systemic goal is the highest-level
goal of the system, which is usually captured in the initial phase of a typical
development process of multi-agent system. The systemic performance measure is the
mechanism to evaluate the goal achievement. As a consequence, it is directly derived
from the systemic goal. For example, these elements are defined in LearnAgents as: (i)
SG: acquire travel packages for clients with as much profit as possible; (ii) SP: average
score. The average score counts how much profit is being achieved in the system.

The goal abstraction is central in our approach since it is essential to determine the
performance measures for each software agent (Section 3.2) and the learning
techniques in later design stages (Section 3.3). As a consequence, we must also
decompose the systemic goal in many subgoals. Note that the modeling of goal
hierarchies is a common activity in MAS methodologies. However, the idea here is to
detect and model the learning-specific goals. Goals work as a unified abstraction to
connect the learning concerns and other basic concerns of the MAS at hand. These
goals can be either derived from goals already defined for the basic functionalities of
the agents or from new ones that are associated with the systemic goal.

These subgoals are associated to agents and create a system based on specialized
agents. This process helps to reduce the complexity of the problem. For example, the
goal of the LearnAgents is to acquire travel packages for clients with as much profit
as possible. This profit is defined as the sum of the utilities of the eight clients in the
TAC game, minus the costs of acquiring the travel goods in the auctions. This goal is
presented in Figure 3, and is decomposed in two other subgoals: build a knowledge base
for decision making; and negotiate travel packages based on this knowledge base.

Fig. 3. The LearnAgents goal diagram

The knowledge base is built with the current prices of the auctions (sub goal:
Monitor Market Information), the clients preferences - expressed as a utility table for
each travel package (sub goal: Classify Customer Preferences), the future prices of the
auctions (sub goal: Predict Next Prices of the Auctions) and a list of different

 A Systematic Approach for Including Machine Learning in Multi-agent Systems 203

scenarios based on the prices and client’s preferences (sub goal: Calculate Best
Allocations).

The negotiation of travel goods depends on the following actions: selection of a
scenario with a high profit and a low risk (sub goal: Classify Best Allocations),
definition of the number and type of travel goods to be bought based on the selected
scenario (sub goal: Create Bidding Orders) and the price definition of the bids for the
auctions (sub goal: Send Bids in Auctions).

In the agent identification process, we associate a sub goal in the goal diagram to
one or more agents in the system. Table 1 illustrates the mapping of the sub goals to
agent types in figure 1. We will select agents in the following phase that use machine
learning to achieve its individual goal and the systemic goal defined above.

Table 1. Mapping of the sub goals to agents

Sub Goal Agent
Monitor Market Information Hotel Sensor Agent, Flight Sensor

Agent, Ticket Sensor Agent
Classify Customer Information Hotel Sensor Agent
Predict Next Prices of the Auctions Price Predictor Agent
Calculate Best Allocations Allocator Master, Allocator Slaves
Classify Best Allocations Ordering Agent
Create Bidding Orders Ordering Agent
Send Bids in Auctions Hotel Negotiator Agent, Flight

Negotiator Agent, Ticket Negotiator
Agent

3.2 Agent Selection and Agent Goal Definition

The Agent Selection and Agent Goal Definition phase selects the agents in the system
that perform complex plans and need a machine learning technique to improve the
performance of the system. The goal of this phase is to establish a well-defined Agent
Learning Problem and defines three features for each selected agent: (i) Learning
Goal, G; (ii) Performance Measure, P, which measures the performance improvement
of the agent; and (iii) a Training Experience, E, which defines the knowledge
acquisition process in learning.

The Flight and Hotel Price Predictor Agent is one of the agents selected for
receiving a machine learning technique in the LearnAgents. The Agent Learning
Problem for this agent is:

• G : predict future auction quote prices for hotel rooms;
• P : error between the predicted and real price; and
• E : use history of quote prices to build prediction knowledge.

3.3 Machine Learning Design

We present in this section a straightforward design that enables reuse and an easy
maintenance. The process of maximizing the performance measure defined in the

204 J.A.R.P. Sardinha et al.

prior phases, normally requires the test of different algorithms. Figure 4 presents a
class diagram of the Flight and Hotel Price Predictor Agent using an object-oriented
design pattern [14]. This design can be reused and refined to different contexts and
applications.

Fig. 4. The Class Diagram of the Price Predictor Agent

The classes PricePredictorAgent and PricePredictorAgentIP are specialized
classes that code the software agent’s basic services, such as sensory of the
environment, event handling, message handling etc.

The class called KnowledgeRepresentation is an abstract class of the data structure
of the agent’s knowledge. The monitor of the agent’s performance measure (defined
in Section 3.2) is coded as an abstract class called PerformanceMeasure. The learning
algorithm is an abstract class called LearningAlgorithm. The example generator of the
agent’s training experience (defined in section 3.2) is modeled as an abstract class
called TrainingExperience.

 A Systematic Approach for Including Machine Learning in Multi-agent Systems 205

The concrete classes ExponentialSmoothing, ErrorEvaluation, LMSLearning and
BuildTrainingExamples are the classes that respectively implement the abstract
classes KnowledgeRepresentation, PerformanceMeasure, LearningAlgorithm and
TrainingExperience.

Several events can trigger the agent learning [13], including the execution of
internal agent actions, throwing of exceptions, messages exchanged between agents
and events sensed in the external environment. The concrete classes
PricePredictorAgent and PricePredictorAgentIP access the class LearningProperty to
trigger the agent learning, and this class is the main interface to the learning pattern.

3.4 Implementation, Training, Testing and Evaluation

We are normally faced with three key aspects in the implementation phase of the
selected software agents in section 3.2: (i) knowledge representation; (ii) learning
algorithm; and (iii) training set used by the learning algorithm.

The first decision determines exactly what type of knowledge will be learned. This
knowledge can be modeled as a function F that receives a state S and determines an
action A, or F: S A. However, it may be very difficult in general to perfectly learn
this function (representation of the knowledge), and normally we reduce the
complexity and transform the problem to only learn some approximation of this
selected function. We must then choose a reasonable representation of this knowledge
for the agent. This best representation can be described as a linear weighted function,
a collection of rules, a neural network or a quadratic polynomial function. This design
choice normally involves an important tradeoff because we would like to pick a
representation that is as close as possible to the ideal knowledge. However, an
expressive function requires more training data in the training phase.

The knowledge representation for the Price Predictor Agent is also modeled as a
function called NextAskPrice that accepts the ask price A of the last game instances
and produces the next ask price N (NextAskPrice:A N). The Price Predictor Agent
uses a simple representation to describe the approximate knowledge. The following
formula called Exponential Smoothing [15] is used to predict the next price:
PredictedAskPrice(n)= *AskPrice(n-1) + (1 -)*PredictedAskPrice(n-1), where is
a number between 0 and 1; and n is the n-th game instance. This formula is coded in
the class ExponentialSmoothing in figure 4. A Least Mean Squares (LMS) algorithm
is used to adapt the value of : (n)= (n-1)+ß*(AskPrice(n-1)-PredictedAskPrice(n-
1)), where ß is a learning rate. This algorithm is coded in the class LMSLearning in
figure 4.

A training set is required to build the knowledge of the agent, and we must select a
process that selects this training set. Training examples can be obtained through a
direct or indirect experience. In the direct experience, the designer can carefully select
the best training examples that lead to a good approximate knowledge. In the indirect
experience, the approximate knowledge must suggest actions that will lead to already
known states that improve the performance of the system, and unknown states that
guide to new experiences. The exploration is important for indirect learning agents
that are willing to discover much better actions for the long run. The class
BuildTrainingExamples has code that executes a query in a database with auctions
prices for games already played, and implements the Training Experience defined in

206 J.A.R.P. Sardinha et al.

section 3.2. The ErrorEvaluation class implements the performance measure also
defined in section 3.2.

3.4.1 Incremental Development, Testing and Integration of Intelligent Agents
Instead of building the multi agent system with all intelligent agents in a single stage,
we propose an incremental development. The first version of the multi agent system is
composed of simple agents that do not use a machine learning algorithm. This first
step is important to test the communication of the agents and the interaction with the
environment. The phases depicted in figure 5 illustrate the process of integration of
the selected agents in section 3.2 in order to improve the Systemic Performance
Measure defined in section 3.1.

The incremental development starts with the code removal of one of the agents
selected in the section 3.2. This agent code is built with the classes defined in section
3.3. We then test the agent individually to measure the Performance Measure defined
in section 3.2, before re-integrating it back in the system. This test is built by the
system engineer and normally comprises small software modules that generate test
cases. Code errors of the intelligent module are found at this point.

Fig. 5. The Incremental Development Phase

The re-integration of the agent is done after the test cases confirm that the machine
learning algorithm works correctly. These tests cases do not guarantee any
performance improvement of the system. Therefore, a performance test is done with
the multi agent system and the new intelligent agent. A simulator of the
environment is required for this phase, and we only give a new version to the multi
agent system if the Systemic Performance Measure defined in section 3.1 has
improved. When performance gain is not achieved, the system engineer must take
one of the two decisions: (i) Modify the code and test again; or (ii) Re-model the
design as shown in figure 2.

 A Systematic Approach for Including Machine Learning in Multi-agent Systems 207

However, there are cases when a performance gain is achieved but the new
intelligent agent starts to use too much computational resources such as CPU and
memory. This slows down the system and the responses of the system are delayed.
Consequently, we propose the distribution of this new agent to another CPU in the
network.

3.4.2 Incremental Development of the LearnAgents
The first version of the LearnAgents was built with only reactive agents [1]. Our main
goal at this point was to test the communication between the agents and the execution
of the system in the environment. Although we were not expecting a good average
score, a benchmark was executed to measure the evolution of the performance gain as
shown in table 2. The benchmark used in table 2 is calculated against 7 simulated
competitors called dummy agents [12]. The system plays 100 games in the benchmark
against the dummies in order to evaluate the average performance and to smooth the
variations in client preferences. The simulator of the real competition can be
downloaded in the TAC web site[12].

The first selected agent was the Allocator Agent (version 1.0 in Table 1). The agent
calculates different scenarios based on the prices in the knowledge base. These
scenarios are travel good allocations (only flights and hotels) that are calculated using
an integer programming solver called XPRESS [16]. The solver is executed not only
in search of the optimal allocation, but as many best allocations as the solver can
optimize in 25 seconds. After testing the new Allocator Agent with the test cases, we
also modified the Ordering Agent with a new heuristic. The Ordering Agent had to
decide the quantity of the required travel goods and the maximum price of the bids
based on the allocations produced by the Allocator Agent. The multi agent system
obtained a score of 1372 in the benchmark against 7 dummies.

The Negotiator Agent was the next selected agent for adding of an intelligent
module. This module uses a min-max procedure [17] and an evaluation function
calculated by a neural network [13] and a reinforcement learning [13] technique. The
Negotiator Agent’s goal is to send optimal bids to the auctions with the minimum
expenditure. Therefore, the agent adapts the weights of the neural network and
searches for an evaluation function that produces these optimal bids. The benchmark
of the version 2.0 was 1752.

The next selected agent to include the intelligent module was the Price Predictor
Agent. This agent uses a price history in the knowledge base to forecast ask prices.
The technique implemented in the intelligent module is called moving average [15].
This agent is important for the system because it helped to deal with uncertainty of the
auction prices. Consequently, the Allocator Agent could now calculate scenarios
based on these predicted prices. This version 3.0 now scored 2224 in the benchmark.

We then decided to improve the Allocator Agent in the version 4.0 of the system.
The flight and hotel goods were the only allocations calculated by the integer
programming solver. We extended the model and included the entertainment tickets,
and then modified the Ordering Agent heuristic to decide the quantity of tickets to
buy based on these new allocations. We executed the benchmark and achieved a score
of 2856. This agent improved the overall score but the system started to present
delays in some responses to the market. This was clear evidence that CPU resources
were low, so we created an Allocator Slave to solve the problem. This new agent also

208 J.A.R.P. Sardinha et al.

used an integer programming solver that calculated the tickets allocation and was now
executing in another CPU.

Table 2. The Evolution of the MAS and the Performance Gain

LearnAgents
Version

Agent Selected
/

Intelligent
Module

Average
Score

Games
Played

0.0 --- -1855 100
1.0 Allocator /

Solver – Integer
Programming

Model, Ordering
Agent / Heuristic

1372 100

2.0 Hotel Negotiator
/ Minimax, N.N.

and Reinforcement
Learning

1752 100

3.0 Price Predictor
(hotel) / Moving

Average

2224 100

4.0 Allocator
(Ticket) /Solver -

Integer
Programming

Model, Ordering
Agent / Heuristic

2856 100

5.0 Allocator /
Solver – Integer
Programming
Model (second

version)

3370 100

6.0 Price Predictor
(flight) / Maximum

Likelihood

3705 100

The Allocator Agent was again selected for improvements in version 5.0. The
integer programming model was modified to include some parameters for tuning
purposes. The travel good allocations are now calculated based on these parameters.
We can select parameters that produce allocations with more hotel rooms from
Shoreline Shanties [12] (the bad hotel) then the Tampa Towers [12] (the good hotel)
in this version. The benchmark with the best parameter configuration produced a
score of 3370.

Our last selected agent was the Price Predictor. This agent was only predicting
hotel auction prices and we now wanted the prediction of flight auction prices. The

 A Systematic Approach for Including Machine Learning in Multi-agent Systems 209

flight auction prices are modified according to a stochastic function. The process uses
a random walk that starts between $250 and $400 and is perturbed every 10 seconds.
We included an intelligent module based on a technique called maximum likelihood
[13] to predict a parameter of the stochastic function that was not revealed directly to
the agents. The predicted parameter is then used to define the expected value of the
flight auction prices. This benchmark achieved a score of 3705 in this 6.0 version.

4 Final Comments

The importance of the learning property in today’s software systems is reflected by
the support provided for this property in existing tools [18][19] and implementation
frameworks [3]. However, software engineers have largely relied on their experience
and intuition in order to develop adaptable MASs. This paper presents a systematic
approach for building intelligent agents with machine learning techniques. These
agents are now able to perform complex plans, adapt their beliefs and achieve
predefined goals. In complex and open environments with many cooperating agents, it
is important to have a system that is able to adapt to unknown situations. Learning
techniques are crucial to the development of multi-agent systems since they provide
well-known strategies to support the construction of adaptable agents.

The incremental development was extremely important for the development
process of the LearnAgents. If all the techniques were added at once, we would never
be able to evaluate the individual performance gain of each technique. This step-by-
step process also prevents the development of agents that deteriorate the performance
because we only include techniques that present improvements. The process presents
an easy method to add new agents with different techniques and minimizes error
development in concurrent and distributed agents.

Fig. 6. The Scores for the Finals of the TAC 2004

210 J.A.R.P. Sardinha et al.

Figure 6 presents the final results of the LearnAgents in the 2004 TAC Classic
tournament. The tournament had 14 participants from universities, research institutes
and technology companies from around the world (USA, Brazil, France, Sweden,
Netherlands, Israel, Macau, China, Japan etc.). The LearnAgents finished the
tournament in the third place. An interesting observation is the similarity between the
best score in the simulation process (3705) and the score in the final round of the
competition. Although dummy agents use very naïve strategies, our system presents a
strategy that is able to adapt to different competitors in an efficient manner.

This process emerged from the long-term application of our method to different
multi-agent systems. We believe there is a need for a software engineering process for
the disciplined introduction of learning properties in software agents through different
development stages. This systematic approach helps the development team of a MAS
to include machine learning techniques in adaptive environments and, consequently,
leverage the performance of the system.

References

1. Wooldridge, M.: Intelligent Agents. In: G. Weiss. Multiagent systems: a modern approach
to distributed artificial intelligence. The MIT Press, Second printing, 2000.

2. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-Wesley Pub Co, 1999.

3. Telecom Italia Lab. JADE Programmer's Guide. http://sharon.cselt.it/ projects/ jade/ doc/
programmersguide.pdf, Feb. 2003.

4. Kendall, E.; Krishna, P.; Pathak, C.; Suresh, C.: A Framework for Agent Systems. In:
Implementing Application Frameworks – Object-Oriented Frameworks at Work, M.
Fayad et al. (editors), John Wiley & Sons, 1999.

5. Zambonelli, F.; Jennings, N. R.; Wooldridge, M.: Developing multiagent systems: the
Gaia Methodology. ACM Transactions on Software Engineering and Methodology, 12 (3)
317-370, 2003.

6. Giunchiglia, F.; Mylopoulos, J.; Perini, A.: The tropos software development
methodology: processes, models and diagrams. Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, 2002.

7. Milidiu, R.L.; Lucena, C.J.; Sardinha, J.A.R.P.: An object-oriented framework for creating
offerings. 2001 International Conference on Internet Computing (IC'2001) June 2001.

8. Sardinha, J.A.R.P.: VGroups – Um framework para grupos virtuais de consumo. Master's
dissertation – Departamento de Informática – PUC-Rio. March 2001.

9. Sardinha, J.A.R.P.; Milidiú, R. L.; Lucena, C. J. P.; Paranhos, P. M.: An OO Framework
for building Intelligence and Learning properties in Software Agents. Proceedings of the
2nd International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (SELMAS 2003) at ICSE 2003, Portland, USA, May 2003.

10. Sardinha, J.A.R.P.; Milidiú, R.L.; Lucena, C.J.P.; Paranhos, P.M.; Cunha, P.M.:
LearnAgents - A multi-agent system for the TAC Classic. Poster Session at The Third
International Joint Conference on Autonomous Agents & Multi Agent Systems (Trading
Agent Competition), July 2004, New York, USA.

11. Garcia, A.: From Objects to Agents: An Aspect-Oriented Approach. Doctoral Thesis,
PUC-Rio, Computer Science Department, Rio de Janeiro, Brazil, April 2004.

12. TAC web site.: http://www.sics.se/tac.
13. Mitchell, T. M.: Machine Learning. McGraw-Hill, 1997. ISBN 0070428077.

 A Systematic Approach for Including Machine Learning in Multi-agent Systems 211

14. Sardinha, J.A.R.P.; Garcia, A.F.; Milidiú, R.L.; Lucena, C.J.P.: The Agent Learning
Pattern. Fourth Latin American Conference on Pattern Languages of Programming,
SugarLoafPLoP'04. August, 2004, Fortaleza, Brazil.

15. Bowerman, B. L.; O'Connell, R. T: Forecasting and Time Series: An Applied Approach.
Thomson Learning, 3rd edition, 1993. ASIN: 0534932517.

16. Dash Optimization. http://www.dashoptimization.com
17. Russell, S.; Norvig, P.: Artificial Intelligence. Prentice Hall, 1995. ISBN 0-13-103805-2.
18. Computer Associates (CA) CleverPath web site: http://www.ca.com/
19. DB2 Business Intelligence web site: http://www-306.ibm.com/software/data/db2bi/

P. Bresciani et al. (Eds.): AOIS 2004, LNAI 3508, pp. 212 – 226, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agents to Foster Conscious Design and Reuse
in Architecture

Daniel Pinho1, Adriana S. Vivacqua1, Sérgio Palma1,
and Jano M. de Souza1, 2

1 Department of Computer Science, Graduate School of Engineering (COPPE),
2 Institute of Mathematics (DCC-IM), Federal University of Rio de Janeiro,

Rio de Janeiro, RJ, Brazil
dpinho@centroin.com.br

{avivacqua, palma, jano}@cos.ufrj.br

Abstract. In architecture companies, work is very often performed by several
individuals. From conceptual design to the construction of a final product, the
object passes through many hands, each one adding bits and pieces until it is
completed. Often, though, these different groups of people who work on a de-
sign don't interact much, which generates problems at later phases. There is lit-
tle reuse of materials and time may be wasted in exceedingly complex designs.
The processes and problems exhibited by the company studied are quite com-
mon and can easily be found in other companies. We present an agent frame-
work to improve process awareness in an architecture company. Based on user
activities and previous designs, agents identify possibilities for reuse and provide
information to the conceptual designer so that their designs take construction dif-
ficulties and possibilities for reuse into account. The agents instrument the process
to produce global awareness, so that the designers design to facilitate later steps
and optimize the process as a whole. In this paper we present the agent architec-
ture, as well as each agent's general functioning and reasoning rules.

1 Introduction

Technology changes at a fast pace. For many companies, these changes motivate
organizational changes. It has become easier to establish communication, exchange
information and be aware of previously hidden processes. For many companies, how-
ever, it has been hard to keep up with the new technological demands and to adapt to
new work or organizational formats that may improve their performance, without
impacting their current business. Companies struggle to change with as little impact
as possible, so as not to compromise their businesses.

In this fashion, even though organizations may adopt technology in their daily
work environment, this technology hasn’t been integrated in such a way as to produce
organizational changes and enable improvements. Most companies still adopt strict
organizational models and, in many cases, information flows only in one direction,
causing breaks in communication. In many cases, technology automates the informa-
tion flow as it exists, not introducing any change.

In a case study of an architecture company, we identified some problem areas that
should be addressed and that are present in other segments and companies. The main

Agents to Foster Conscious Design and Reuse in Architecture 213

problem in this type of company is that there are disjoint work groups, and, even
though work done by one group (design) defines the work that will be done by the
other (physical project), there is little communication between them. There is no
feedback from the second group as to what could be improved or what has generated
problems for them. This lack of awareness of the project as a whole stems from the
company’s organizational structure and difficulty in communication between teams
and often generates waste, delays and problem difficulties.

We have devised agent-based system to integrate the different teams involved and
promote information exchange and awareness of the process as a whole. Agents work
with available information on the users’ tasks and their current work and provide
information about potential problems of the current design. The intent is to cause as
little impact as possible on the way designers work, but to promote changes in their
way of designing. Agents working in the background can provide a seamless integra-
tion between the different design teams. Ideally, designers would learn about the
consequences of their design choices and about the potential problems these choices
may cause during the later stages of the project, and design in a more informed way.
This system will be implanted in our case study company and we’ll verify if the new
knowledge brought about changes in the designs produced and the designers’ way of
thinking.

We begin by presenting some background work and then go on to describe a case
study of an architecture company, H Camargo Promotional Architecture and Land-
scaping, examining its processes and information flow, whose problems we are at-
tempting to solve. We then go on to describe our approach and the communication
agents we are implementing. We then present a scenario to illustrate how the system
functions and wrap up with a brief discussion and conclusions in section 5.

2 Related Work

In this section we present some related research that has inspired and guided our, in
particular, agent and awareness systems. Computer-supported design systems have
been the object of much research in the past: ranging from expert and case-based rea-
soning systems to distributed agent approaches, many alternatives have been proposed.
A good review of agent-based engineering systems can be found in Shen et al. [1].

2.1 Agent Systems

Russel and Norvig define Intelligent Agents as entities that perceive its environment
through sensors and act upon it [2]. Agent-oriented techniques are being increasingly
used in a range of telecommunication, commercial and industrial applications, as
developers and designers realize its potential [3]. Agents are especially suited to the
construction of complex, peer-to-peer systems, because they permit parallelization
and easy reconfiguration of the system.

It is currently believed that Multi-Agent Systems (MAS) are a better way to model
and support distributed, open-ended systems and environments. A MAS is a loosely-
coupled network of problem solvers (agents) that work together to solve a given prob-
lem [4]. A comprehensive review of agent systems applied to cooperative work can
be found in Ellis and Wainer [5].

214 D. Pinho et al.

2.2 Awareness Systems

Awareness has received a lot of attention among researchers in the past few years, as
they start to realize the importance of being aware of collaborators and the environ-
ment while working. Initial awareness work focused on video and audio support for
cooperation as, for instance in Fish et al. [6] or Isaacs et al. [7], but other tools and
methods have appeared since.

The most basic form of awareness is the one provided by messenger systems (such
as Yahoo or MSN Messenger, AOL Instant Messenger etc.), which have become
widely accepted and adopted. A more specialized collaborative tool, GROOVE, in-
troduces the concept of “shared spaces” to increase the scope of personal awareness.
Within GROOVE’s shared spaces, users can be aware of what others are doing and on
what spaces’ objects they are working.

Other researchers have focused on document- or task-based awareness and on pro-
viding information to users about who is working on the same document or perform-
ing similar tasks at a given moment, as in Moran et al. [8]. Many recent papers ad-
dress awareness in mobile computing environments, where location awareness is a
central issue for collaboration, as in Aldunate et al. [9] and Esborjörnsson et al. [10].

More interestingly, some proposals involve motivation, incentives and support for
cooperation, such as described in Pinheiro et al. [11]. They propose a framework to
provide past event awareness, where users are informed of past occurrences, results
and work history of each other (which includes evolution of shared data, members’
actions and decisions etc.), so as to better collaborate in the present.

Closer to our ideas, Hoffman and Hermann [12] propose a prospect awareness sys-
tem that allows individuals to envision the potential benefits of collaboration, in an
attempt to motivate collaboration. Our system provides potential problem informa-
tion, in an effort to generate better and more cost-effective designs, avoiding prob-
lems in future steps.

3 Communication Problems in an Architecture Company

H. Camargo Promotional Architecture and Landscaping has been a leader in its segment
since 1971. It develops custom-made architectural projects for fair and exhibit stands. It
is housed in a large pavilion (with space for administration, workshops and stocks) and
has a permanent team of 120 employees. As in any large company, communication
problems have started to arise, generating difficulties during project development.

There are four main divisions in the company, as seen in Fig 1.

• Sales: finds potential clients and their needs.
• Design: creates proposals for these potential clients, establishing the overall

designs and some of the materials to be used.
• Project: further details the project, defining the physical specification: meas-

urements, quantity of materials, how these are to be put together etc., only
for accepted proposals.

• Execution: executes the physical specification, building the actual stand and
whatever components may be necessary.

The company essentially functions as two entities: the first one “Sales and Design
divisions” is responsible for finding new potential clients and designing solutions for
those. The second one “Project and Execution divisions” is responsible for seeing the

Agents to Foster Conscious Design and Reuse in Architecture 215

Fig. 1. H Camargo current information workflow

project through, effectively building the stand to the design initially specified. Stands
are all built in–house and then taken to the event site and put together. Stands already
used are either sent to another event or returned to the company for storage.

Project proposals need to be created quickly, be original and innovative. The De-
sign department designs projects for the stands based on briefings sent by potential
clients. These initial designs are not charged for, and the company will get paid if the
project is accepted (and executed). It is important to note that communication flows
almost exclusively in one direction: from the Design division, a design (a 3D Studio
drawing) is handed on to the Project division and then to Execution. Given that these
last two have no say whatsoever in the actual design, oftentimes problems are generated.

In an effort to rapidly create new and interesting designs, architects employ materi-
als that may not be in stock (and possibly be hard to purchase) or define shapes that
are difficult (if not impossible) to execute, which generates problems for the Project
and Execution Teams. Some designs are harder to implement, which translates to
more time spent on the physical specification and difficulties in construction. A sam-
ple design is shown in Fig 2.

The construction of a stand, from initial conception to the moment it is mounted at
a fair, involves a series of processes and materials: after approval, a project has to be
detailed (further specified) so that it can be mounted in the originally designed way.
This specification may lead to the use of in-stock materials, and it also creates trans-
formation processes to reuse materials (wood, aluminum and impressions). Some of
these transformations are cutting, painting, silk screening and assembling. In the end,

216 D. Pinho et al.

Fig. 2. Sample design created by designers at H. Camargo

all the pieces have to be arranged in trucks and taken to the fair, where it has to be
mounted in exactly the same way as initially designed.

Furthermore, this lack of global awareness and communication increases the possi-
bility of delays in the project (due to difficulties with physical specification and con-
struction), materials waste (if the design includes materials or shapes that cannot be
reused), storage of old (used) stands and increase in costs. Naturally, completed pro-
jects must be delivered on schedule, which may also lead to a need for overtime or
hiring extra personnel to help with construction.

Currently, each division uses computers to perform their part of the process and
hands down files with specifications to the next one. A knowledge base with all the
designs created (executed or not) by the company is under construction and will be
used to furnish information to our agents.

In the current model there is a total lack of communication between the teams that
design and the teams that build the stand. In many cases this lack of communication
and global awareness on the part of the architects generates serious quality problems
and make it hard to reuse of the existing materials in stock.

The majority of problems are generated when the designer develops a project that
demands materials that are not in stock. In this in case, extra costs will be incurred in
purchasing materials so that the project is properly executed. In many cases problems
occur because the stand is designed without any concern for the way in which it will
be constructed. This is an even worse problem because the project cannot be built in
the way it was designed, causing serious quality problems and issues with clients.

Given these issues, we can see that a major problem source is the lack of awareness
and consciousness in relation other phases of the process. A good designer should be
cogniscent of all the project phases. Lack of information is a cause of many problems.

Agents to Foster Conscious Design and Reuse in Architecture 217

4 Approach

We have envisioned an agent-based system to inform designers about similar projects
in the knowledge base and potential problems during the conceptual design phase,
based on previous problems. The agents also present ideas based on the information
in the briefing to the designers, so they can consider previous similar needs and what
solutions were given. Agents also extract information from each designer’s current
design and verify the feasibility of this design given previous designs, materials in
stock and shapes being utilized. Agents are especially well suited because they can
work pro-actively in the background, managing and exchanging information. Agents
can also monitor users’ actions and work progress, to display information to the user
when necessary. Autonomous agents can work in parallel with the user, keeping track
of their work and automatically providing information.

Our main goal is to provide designers with information on the possible conse-
quences of their choices (for instance, if a certain type of material is out of stock and
hard to come by, there is a good chance the ordering process will cause a delay in
construction). We expect that, given this information, designers will make different
decisions, which will benefit the company as a whole.

Information related to the project is delivered to the designers before and during its
execution. Agents have access to the knowledge base, stock, processes and existing
design objects. This information is used to assess the feasibility, determine possible
problems with a project as it is designed and to estimate project cost, important factor
when designing a proposal.

Agents analyze the information, linking it to other sources of information, estab-
lishing possible problems and displaying this information to the designer as they work
on designing a new stand. Potential problems are: non-existence of materials, waste,
cost, impossibility of reuse and time to construction. Agents have four main func-
tions: filtering, processing and distributing information and project management.
Fig 3 shows how the agents fit into the existing workflow.

• Filtering agents are in charge of presenting similar projects and extracting the
necessary information from the 3d Studio drawing that is being worked on by
the designers.

• Processing agents verify whether there are materials in stock or on order that
match the information extracted by the filtering agents, and whether some of
the old projects or objects can be reused for this one.

• Information distribution agents are in charge of informing the designers
about the possible problems with the project and the purchasing department
about the possible need to buy certain materials so that the project can be
built as it has been designed.

• Agents for project management are activated from the moment a project is
approved. They monitor all of the construction stages up to the opening of
the stand in the fair and its breakdown afterwards.

The agent system is being implemented using IBM’s Aglets library. The Aglets
library supplies a standard template for agent creation. As mentioned before, there
are four types of agents: filtering, processing, distribution and process management
agents. These are further detailed below.

218 D. Pinho et al.

Fig. 3. Envisioned information workflow

4.1 Filtering Agents

Filtering agents initiate their work as soon as data from the project briefing becomes
available. This is initially done by hand, and the designers feed the data into the sys-
tem in a structured form. The information on the briefing usually includes: size of the
stand, location, mandatory items, cost and others information about purpose and about
the company. Given this information, a search on the knowledge base provides the
previous stands that resemble more closely the briefing at hand. This would create a
set of information that would enable the architects to design projects reusing some
ideas, shapes and objects and still remain free to experiment with variations on these
themes. In the near future, we will be collecting this information from the briefing
through textual analysis.

Filtering agents also work on 3d Studio files. These files have lots of information
about the design: they list objects used and their location and indicate the vertices for
complex shapes. The agent extracts from this file what objects are being used, calcu-
lates sizes and recognizes shapes from the given vertices.

The following information is extracted from the design file and analyzed by the
agents:

• Materials List: a list of all materials that will be used in the construction
of the stand. These can be matched against existing materials (in stock) to
determine the probability of delays due to lack of material. Note that it is
not enough to check with materials currently in stock, but the processing
agent has to take into account other designs currently under construction.

Agents to Foster Conscious Design and Reuse in Architecture 219

• Objects: pre-existing objects (for instance, chairs, desks or stools) that are
part of the design. Some of the furniture items may already be in use by
other stands. Agents need to verify not only the current snapshot of the in-
formation, but take into account the stands in construction.

• Shapes: shapes used in the construction of each stand or object of the
stand. Agents perform shape analysis to see if parts of previous designs
can be reused in the current one.

Information collected by the filtering agents is stored as XML in the knowledge
base and then passed on to the processing agents so can be analyzed. A sample XML
information file is shown below.

Table 1. XML representation of 3D Studio objects

<xml>
 <nmesh>1</nmesh>
 <mesh>
 <name>Box01</name>
 <nvertex>8</nvertex>
 <nface>12</nface>
 <vertex>
 <vert n="0">
 <x>-34.615379</x>
 <y>-21.005919</y>
 <z>0.000000</z>
 <u>3829894525963529600000000000000.000000</u>
 <v>183776526117779500000000000000000.000000</v>
 <nx>0.200000</nx>
 <ny>0.400000</ny>
 <nz>0.400000</nz>
 </vert>
 <vert n="1">
 <x>-34.615379</x> ...
 </vertex>
 <faces>
 <face n="0">
 <v1>0</v1>
 <v2>2</v2>
 <v3>3</v3>
 <n1>0.000000</n1>
 <n2>0.000000</n2>
 <n3>1.000000</n3>
 </face>
 <face n="1">
 <v1>3</v1> …
 </faces>
 </mesh>
</xml>

220 D. Pinho et al.

From this file, all the necessary information can be extracted. The file contains all
the objects as a mesh. A mesh has a name, the vertex numbers and the face numbers.
Each vertex has coordinates x, y, z and the normal vectors. Each face is formed by a
triangle and indicates which vertex from the list is being used. In this fashion it is
easier for the processing agents to determine the area and volume from each object
and it’s still possible to reconstruct the object separately from the others.

4.2 Processing Agents

Processing agents evaluate items that exist in stock and shapes under construction.
They work with the filtering agents to determine, in real time, if an object or shape
can be used in that project, given the expected date of completion. We will be using
shape analysis algorithms to assess the viability of the construct. These algorithms
are currently under study. This agent is also responsible for determining costs of
materials used and generating a list of materials that will need to be purchased.

The following inferences are made:

• Difficulty in specifying a project or in building certain shapes can be in-
ferred from the time spent on previous similar tasks. Tasks that take
longer, demand more individuals’ work or must be reviewed several time
can be considered more complex than others.

• Possibility for using parts of older stands can be found through shape
analysis.

• Furniture reuse can be encouraged by suggesting alternative, already ex-
isting furniture that complies with the overall design (established through
shape and color analysis and project history).

The initial list of materials will also help the physical specification teams, as one of
their tasks is to generate a complete list of materials, with sizes and quantities. This
team also determines which parts from other projects can be reused and what trans-
formations should be made on previous designs.

4.3 Distribution Agents

Distribution agents are the interface with the designer. They pass the information
analysis to the designers. They display messages on the designers’ screen, offering
useful information during the project.

We have a smaller window showing the design and highlighting the problems.
There are some icons that display how many problems and of what types (structural,
materials, time, cost) have been detected. This window also shows the cost of the
project during its design. This is important information for the designer because it
allows him to evaluate if his project is in accordance with the briefing. However, it is
also important not to draw the designer’s attention away from his or her current work
too much, for that could compromise his or her work. We found an interface that is,
at the same time, expressive and unobtrusive.

This agent is also able to create a direct communication link between the design
and stock team so that faster, joint analysis can be performed. The agent also pro-
vides a communication link between designers and the execution department, to clear
doubts and create an experience base. This communication is asynchronous, as the

Agents to Foster Conscious Design and Reuse in Architecture 221

questions inserted in an issue base are answered during the course of the project.
These issues will have an answer date limit and a priority order. They are sent by
email (simple and fast method of communication) to individuals according to the type
of issue. All the answers are stored for future consultations of similar issues.

4.4 Project Management Agents

As soon as the project is approved, the project accompaniment agents start to follow
it. These agents work on the information received from the processing agents, follow-
ing the workflow from the beginning of stand construction to its boarding on the truck
for delivery.

Initially, a list is generated, containing all the materials that need to be bought and
shapes that need to be built. For each shape, there is a registry of when construction
on it was started, when it was finished and a text field for entering difficulties encoun-
tered during construction. All these data are inserted by the production teams. After
the purchase of each material and the construction of each shape, these items are re-
moved from the list, so that the team stays up to date on the items that still need to be
constructed. A countdown on the days until shipping is always visible so the produc-
tion team is aware of the schedule. Finally, another list is created to verify which
materials have already been expedited in the trucks. This list is necessary because a
very common problem that occurs is that certain parts are forgotten, which causes a
great deal of trouble and cost increase.

5 Scenario

To illustrate, we present a case study: the Siemens stand built by H. Camargo for a
telecommunications fair. Initially, Siemens supplied a briefing detailing the require-
ments for the stand. The following paragraphs present excerpts from the briefing text,
drafted by the Sales team with the client, in an effort to understand their needs.

• The stand will sit in a 17x23 metre area, between two corridors. It needs
to have two floors as described below. The greatest emphasis must be
given to the cell phones, since the stand will be between two competing
cell phone stands. They should be displayed in cells or “islands” and no
longer on desktops as in previous stands.

• On the top floor, they envisioned two large blocks for meeting rooms.
These would be connected by a deck, where a bar with tables and chairs
could be placed. To get to the mezzanine, a large ramp could be used in
place of stairs, since it would provide good movement, allow people going
up and down to be seen, enable disabled access to the second floor and
have and innovative design. An alternative idea would be to use a panto-
graphic elevator, bringing in new ideas in relation to this aspect. This is an
important differential.

• The lower level needs special treatment. The physical part should be the
same that has been used in other stands this year. The differentiation
should be in the lounge, which will be located beneath the deck and com-
pletely open. A bar integrated with the cell phone window displays
should be the main draw of the stand.

222 D. Pinho et al.

• Cell phone displays should once again be innovative. As before, allow in-
dividuals to manipulate each model, so there should be a safety chord and
also space for accessories. In some cases, a desktop for a notebook (same
numbers as usual). This division from Siemens will be paying for 50% of
the stand. Some of the displays should be integrated with the lounge and
windows with the products on the floor can be used, since they were well
received previously.

• As a whole, they are imagining a stand with scenic lighting or even floor
lighting, using a cover for a high-impact stand and scenic lighting as a
means of differentiation. The stand will contain an entertainment space
that has not been thought through yet.

From this briefing, several bits of information can be extracted that serve as input for
our agents to search the knowledge base. The items shown in Table 2 can be
extracted.

Table 2. Data from the briefing

Client Siemens
Neighbors None
Floors 2
1st floor area 391 m2
2nd floor area Undefined
Length 23 m
Width 17 m
Price Undefined
Spaces Bar, Meeting Room, Deck, Ramp, Elevator, Lounge, Window

Displays, Mezzanine, Computer, Notebook and Plasma TV.

These elements are used to search a case base of previous designs. As can be ob-
served on the screenshot in Figure 4, the search yields several stands that are some-
how similar to what is being designed at the moment. In this manner, the architect
can re-use some ideas from previous designs to generate a new one or even reuse
something that had previously been designed.

From the search results, one can also easily and quickly establish a price estimate
for the stand, given the price tags on the similar stands. In this fashion, the commer-
cial department can rapidly generate a cost estimate that can be given to the client.

During stand creation using 3D Studio, the architect receives several warnings with
relation to the complexity of the stand and reuse of materials. One of the main issues
relates to two curved walls created for the stand. These would be impossible to build
using “Octanorm”, a system for quick and easy construction and complete reuse,
which means they would have to be constructed using wood, which means extra cost,
time and risks.

Despite all the warnings, architects chose to keep the curved walls as planned. This
generated a series of extra costs and problems, for they had to be specified and then
cut from pieces of wood that had to be pre-built at the company site. This special
operation happened because the stand needed to be ready within two days.

Agents to Foster Conscious Design and Reuse in Architecture 223

Fig. 4. Knowledge Base Screenshot

Another issue relates to the bar: the architect allocated objects that were already in
use at another stand during the same period. The agent provides options to the archi-
tect, who accepts the suggestions. In this fashion the project can be altered before
being sent for approval, with the “optimized” bar. If that had not been done, costs
would have risen steeply, since a whole new bar would have to be built as specified in
the project.

Another warning generated by the agents related to the floors. According to the
briefing, the floor would have to be lit. To fulfil this requirement, the architect cre-
ated a floor made of glass panes. However, the company didn’t have that quantity of
glass in stock. In this case, the purchase was inevitable but, given the early warning,
better purchasing conditions could be negotiated.

After stand design approval, lots of messages were generated between the execu-
tion and design teams and the issue base became an important resource used by both
parties, since the designers couldn’t be available full time to help the builders.
Through it asynchronous communication was made possible, which allowed both
teams to answer questions in their own time.

A serious discussion point was the mushroom-shaped display window. Since it
was a completely new design, the project and execution teams had to draw several
technical drawings to fulfil the designer’s drawings.

At the end of a long process, the stand was completely built within schedule, with-
out errors or failures. The architects’ approval was practically 100%, as several prob-
lems were avoided. The designers’ creativity wasn’t compromised at any moment,
which enabled the generation of a beautiful project, as can be seen on the photo in
Figure 5.

224 D. Pinho et al.

Fig. 5. Photo of the final stand being constructed at the fair site. This stand was considered the
best in the fair

It is important to note that this is an illustration of how the system would work, and
where the agents would chime in with suggestions and communication. This was an
actual (successful) project that was undertaken in 2003, but without agent or knowledge
base support. We are envisioning a number of improvements upon the process, and
hope to test out the system using this case as the first test case, since it is highly complex
and has the potential for generating several problems. The agents and knowledge bases
are under construction and we hope to have them built soon to start testing.

6 Conclusions

With these agents we expect to change the way in which designers work: by provid-
ing them with data to inform their designs, they will be able to make better design
choices, leading to more reuse and fewer errors.

It is important to note that the agents are not meant to restrict the design and never
force the designer into any one solution at any moment. We mean for the agent to
provide awareness so that the designer can make conscious choices. The designer
may still choose to build all-new modules and complicated shapes that won’t be re-
used, but he or she will be aware of what is being done (it will be a conscious choice).
We will be investigating the consequences of the introduction of this information at a
later time.

Agents to Foster Conscious Design and Reuse in Architecture 225

The global Knowledge Base under construction will hold information on previous
designs (such as time spent on construction, objects and materials, spent on assembly,
time spent on physical specification etc.), it will also establish, when possible, a de-
sign history and difficulties. This history will be automatically captured by the agents
from this point on: the agents store all new information into the knowledge base,
creating a case history that can serve as a basis for future inferences.

One addition we would like to make is to provide builders with tools for logging
their problems, so that their knowledge can be disseminated throughout the company.
Through these, builders would be able to document and create a history of each pro-
ject. This history would be particularly useful for reflection on the process.

Agents are well suited for this type of application and also for triggering certain
types of organizational changes: they can be easily integrated with other applications,
doing their work without interfering with the designers’ work, and they can work pro-
actively and autonomously in the background, assisting the user as he or she works.
Displaying information as users work is potentially more effective than expecting
designers to study or learn about each other’s designs or work, given they’re always
working under time constraints. Having the information available in its context, when
it is relevant can have a greater impact than studying and trying to remember it all.

This approach has potential benefits, as it starts to generate a company-wide con-
sciousness that did not exist, and does so from the bottom up, provoking thought,
promoting information exchange and increasing process understanding by designers
and architects, instead of imposing new organizational directives from the top down.
Initial discussions with stakeholders have provided us with some useful insights and
general approval of the idea and potential outcomes.

This approach is much more effective than the imposition approach, for individuals
can see the consequences of their work and the benefits and problems raised by each
design choice. This would generate a greater level of engagement with the process.
One issue we are especially concerned with is that the application does not limit the
designers’ creativity, leading to repetitive designs. We will be watching how the intro-
duction of this technology reflects of the designs produced. We hope that designers will
still search for novel, creative solutions but that these will be more cost effective.

Acknowledgements

This work was partially supported by CAPES and CNPq. We would also like to
thank H. Camargo Promotional Architecture and Landscaping for their support in the
development of this project.

References

1. Shen, W., Norrie, D.H. & Barthès, J.P; Multi-Agent Design Systems for Concurrent Intel-
ligent Design and Manufacturing. Taylor & Francis, London, 2001.

2. Russell, S. and Norvig, P. Artificial Intelligence - A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

3. Jennings, N.R. An Agent-Based Approach for Building Complex Software Systems.
Communications of the ACM, April 2001/Vol. 44, No. 4

226 D. Pinho et al.

4. Wang, A., Conradi, R., Liu, C. A Multi-Agent Architecture for Cooperative Software
Engineering Proceedings of the Third International Conference on Autonomous Agents,
1999Root, R. Design a Multi-Media Vehicle for Social Browsing. Proceedings CSCW,
1988.

5. Ellis, C.A. e Wainer, J. Groupware and Computer Supported Cooperative Work. In
Weiss, G. (Ed.) Multiagent, Systems, MIT Press, 1999.

6. Fish, R. S., Kraut R. E. and Chalfonte, B. L. The VideoWindow System in Informal
Communications. Proceedings CSCW, 1990.

7. Isaacs, E.A., Tang, J.C. and Morris, T. Piazza: A desktop Environment Supporting
Impromtu and Planned Interactions. Proceedings of CSCW’96, Cambridge, MA, 1996

8. Morán, A. L., Favela, J., Martínez-Enríquez, A. M. and Decouchant, D. Before Getting
There: Potential and Actual Collaboration. In: Haake, J. M. and Pino, J. A. (Eds.) CRIWG
2002, LNCS 2440, pp. 147 - 167, Spring-Verlag, 2002

9. Aldunate, R. Nussbaum, M. and González, R. An Agent Based Middleware for support-
ing Spontaneous Collaboration among Co-Located, Mobile and not Necessarily Known
People. Workshop on Ad hoc Communications and Collaboration in Ubiquitous Comput-
ing Environments, CSCW 2002

10. Esborjörnsson, M. and Östergren, M. Issues of Spontaneous Collaboration and Mobility.
Workshop on Supporting Spontaneous Interaction in Ubiquitous Computing Settings,
UBICOMP'02, Göteberg, Sweden, 2002

11. Pinheiro, M.K., Lima, J.V. and Borges, M.R.S. A Framework for Awareness Support
in Groupware Systems. Proceedings of the 7th International Conference on Computer
Supported Cooperative Work in Design - CSCWD’2002, Rio de Janeiro, Brazil, Septem-
ber 2002, pp.13-18

12. Hoffman, M and Herrmann, T. Prospect Awareness - Envisioning the Benefits of Col-
laborative Work. Available online at: http://iundg.informatik.uni-dortmund.de/iug-home/

people/MH/Prospect Awareness/PAhome.html

Author Index

Alencar, Paulo 125
Arzdorf, Thomas 68

Brandão, Anarosa A.F. 125

Chen, Wei 36
Collier, R.W. 182

de Lucena, Carlos J.P. 125
de Souza, Jano M. 212
Debenham, J. 140
Decker, Keith S. 36

Gans, Günter 68
Garcia, Alessandro 198
Guizzardi, Giancarlo 110

Halpin, Terry 97
Hawryszkiewycz, Igor 1
Henderson-Sellers, Brian 1, 140
Honiden, Shinichi 19

Jarke, Matthias 68
Jennings, Nicholas R. 52

Keegan, S. 182

Lakemeyer, Gerhard 68
Lin, Aizhong 1
Low, Graham 157
Lucena, Carlos J.P. 198

Milidiú, Ruy L. 198
Modi, Pragnesh Jay 169
Moreau, Luc 52

O’Grady, M.J. 182
O’Hare, G.M.P. 182
Oh, Jean 169
Ohsuga, Akihiko 19

Palma, Sérgio 212
Pinho, Daniel 212

Sardinha, José A.R.P. 198
Schmitz, Dominik 68
Singh, Munindar P. 85
Smith, Stephen F. 169

Tran, Quynh-Nhu Numi 140, 157

Veloso, Manuela 169
Vivacqua, Adriana S. 212

Wagner, Gerd 110
Wan, Feng 85
Wei, Chen 36
Wei, Yan Zheng 52
Williams, Mary-Anne 157

Yoshioka, Nobukazu 19

	Frontmatter
	Information Systems
	An Agent-Based Collaborative Emergent Process Management System
	Mobeet: A Multi-agent Framework for Ubiquitous Information Systems
	The Analysis of Coordination in an Information System Application -- Emergency Medical Services
	Market-Based Recommender Systems: Learning Users' Interests by Quality Classification

	Analysis and Modeling
	SNet Reloaded: Roles, Monitoring and Agent Evolution
	Analyzing Multiparty Agreements with Commitments
	Fact-Orientation Meets Agent-Orientation
	Towards Ontological Foundations for Agent Modelling Concepts Using the Unified Fundational Ontology (UFO)

	Methodologies
	AgentZ: Extending Object-Z for Multi-agent Systems Specification
	Incorporating Elements from the Prometheus Agent-Oriented Methodology in the OPEN Process Framework
	A Preliminary Comparative Feature Analysis of Multi-agent Systems Development Methodologies

	Applications
	CMRadar: A Personal Assistant Agent for Calendar Management
	Agents as Catalysts for Mobile Computing
	A Systematic Approach for Including Machine Learning in Multi-agent Systems
	Agents to Foster Conscious Design and Reuse in Architecture

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

